Braun T., Becker K.-F., Bauer J., Hausel F., Pahl B., Wittler O., Mrossko R., Jung E., Ostmann A., Koch M., Bader V., Minge C., Aschenbrenner R., Reichl H.
Technical University Berlin, DE
Keywords: microsystems, packaging, RF
As the development of microelectronics is still driving towards further miniaturization new materials, processes and technologies are crucial for the realization of future cost effective microsystems and components. These future systems will not only consist of SMDs and ICs assembled on a substrate, but will potentially integrate also living cells, organelles, nanocrystals, tubules and other tiny things forming a true Heterogeneous System. Futures ICs and passives will also decrease in size, e.g. for RF-ID applications forecast die sizes are smaller than 250 µm, thicknesses less than 50 µm and pitches way below 100 µm, passives, if not directly integrated into the system carrier, will be even smaller. New placement and joining technologies are demanded for reliable and low cost assembly of such applications, as today’s packaging technologies only allow the assembly of those small dies and components with a very high effort and for this reason with high cost. With ongoing miniaturization also the protection of the microsystems mostly realized by a polymer needs to be decreased in thickness, yet providing maximum protection. Here, besides mechanical stability, humidity barrier functionality is a key factor for system reliability.
Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2008: Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation – Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Volume 3
Published: June 1, 2008
Pages: 161 - 165
Industry sector: Sensors, MEMS, Electronics
Topic: Sensors - Chemical, Physical & Bio
ISBN: 978-1-4200-8505-1