A Compact Model for the Threshold Voltage of Silicon Nanowire MOS Transistors including 2D-Quantum Confinement Effects

, , ,
,

Keywords: , , ,

A quantum-mechanical compact model of the threshold voltage for quantum-wire (QW) MOSFETs has been developed. This approach is based on analytical 2D solutions for the decoupled Schrödinger and Poisson equations solved in a 2D cross-section of the silicon channel. A quantum correction based on the perturbation theory has been also introduced to improve the model accuracy. Finally, the validity of the model has been verified by comparison with data obtained with a 2D/3D Poisson-Schrödinger drift-diffusion simulation code.

PDF of paper:


Journal: TechConnect Briefs
Volume: Technical Proceedings of the 2005 Workshop on Compact Modeling
Published: May 8, 2005
Pages: 175 - 178
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topic: Nanoparticle Synthesis & Applications
ISBN: 0-9767985-3-0