Vibration Analysis of Quartz Yaw-Rate Sensor to Reduce Mechanical Coupling

, , , , ,
,

Keywords: , , , ,

For a yaw-rate sensor (gyroscope), the reduction of mechanical coupling phenomenon is a key technology for achieving high performance. We analyze the phenomenon with a combination of two models, (1) a static model of a bending sensor beam with a geometrically asymmetric cross section, and (2) a dynamic model of two degrees of freedom system. This analysis proves that an origin of the mechanical coupling is a static tiny displacement due to the asymmetry of the cross section, and the tiny displacement amplified extremely by resonance phenomenon. The relationships between the extent of mechanical coupling, the asymmetric ration, and a resonant frequency differential ration, are also obtained. The relationships give a basic guideline for yaw-rate sensor design and fabrication.

PDF of paper:


Journal: TechConnect Briefs
Volume: 1, Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems
Published: March 19, 2001
Pages: 302 - 305
Industry sector: Sensors, MEMS, Electronics
Topics: Chemical, Physical & Bio-Sensors, MEMS & NEMS Devices, Modeling & Applications
ISBN: 0-9708275-0-4