Three-terminal, single molecule circuits based on carbon nanotube interconnects

, , , , , ,
,

Keywords:

The vision for molecular electronics extends well beyond minitaturation and scaling and includes new techniques for studying chemical bonding, biocatalysis, and molecular recognition. However, working single-molecule devices remain exceedingly difficult to fabricate. We demonstrate a new architecture for studying single-molecule behavior which relies on point functionalization of single-walled carbon nanotube circuits. The technique is free of precision lithography and mechanical manipulation. Instead, it uses nanotube conductance to reveal chemical processes happening in real-time and to deterministically control oxidation, reduction, and conjugation to target species. We routinely functionalize pristine, defect-free SWNTs at one, two, or more sites and demonstrate three-terminal devices in which a single biomolecular attachment controls the electronic response. Compared to other fabrication techniques for molecular electronics, this method produces devices with excellent electrical, mechanical, and chemical stabilities and well-defined bonding to the molecule of interest.

PDF of paper:


Journal: TechConnect Briefs
Volume: 1, Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, Volume 1
Published: May 20, 2007
Pages: 556 - 558
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topics: Nanoelectronics
ISBN: 1-4200-6182-8