Bieri R., Borek-Donten J., Celikkol Zijlstra B., Cattaneo S., Bürgi T.
Stat Peel, CH
Keywords: airborne, carbon nanotube, occupational exposure, sensor
Today’s advances in man-made nanomaterials pose new and unprecedented health risks, arising especially from airborne, inhalable fiber-shaped nanomaterials, like carbon nanotubes (CNTs). In vivo studies indicate that inhalation of CNTs can cause adverse pulmonary effects including inflammation, granulomas and pulmonary fibrosis [1, 2]. As a result, the National Institute of Occupational Health and Safety (NIOSH) in USA recommends an exposure limit of 1µg/m3 of CNTs as a respirable mass 8-hour time-weighted average concentration [3]. However, detecting this amount is extremely challenging with the current sensing solutions. Here, we would like to present a wearable, cost-effective badge sensor with an air filtration system [4,5]. The sensor is capable of collecting airborne carbon nanotubes from the surrounding atmosphere on a disposable membrane filter, which acts as a SERS substrate. The badge system is integrated with a bench-top sized optical reader for fast and automated inspection of collected samples. Our system enables detection of sub-nanogram quantities of collected CNTs and, by utilizing the advantages of Raman spectroscopy, is a solution able to uniquely distinguish carbon nanotubes from background aerosols present in air. [1] Nat Nanotechnol. 4(11): 747–751 (2009) [2] Am J Physiol Lung Cell Mol Physiol 289: 698-708 (2005) [3] NIOSH CIB 65: Carbon Nanotubes and Nanofibers [4] Patent pending [5] Swiss Technology and Innovation Project 17623
Journal: TechConnect Briefs
Volume: 3, Biotech, Biomaterials and Biomedical: TechConnect Briefs 2017
Published: May 14, 2017
Pages: 275 - 278
Industry sector: Sensors, MEMS, Electronics
Topic: Sensors - Chemical, Physical & Bio
ISBN: 978-0-9988782-0-1