Tsai C.S., Qiu G., Gao H., Li G.P., Yang L.W., Nikitov S.A.
University of California Irvine, US
Keywords: band-pass filters, ferromagnetic resonance, tunable microwave band-stop, YIG/GGG-GaAs layer structures
Future wideband communication and radar systems require high-speed electronically-tuned wideband microwave band-stop and band-pass filters. Ferromagnetic resonance (FMR)-based microwave devices possess the unique capability of high-speed electronic tunability, using magnetic field, for very high carrier frequency and very large bandwidth. In this paper, low-loss magnetically tuned wideband microwave band-stop and band-pass filters using yttrium iron garnet / gadolinium gallium garnet-gallium arsenide (YIG/GGG-GaAs) layer structures are reported. The transmission characteristics of both the stop-band and pass-band filters were measured across the entire bandwidth of 1.0 to 30.0 GHz. For example, the measured transmission characteristics of the band-pass filter at the passband center frequency of 7.1 GHz shows a 3 dB bandwidth of 1, 450 MHz, out-of-band rejection of 33dB, and an insertion loss of 1.5 dB. A good agreement between the experimental results and the simulation results has been achieved. It should be noted that the out-of-band rejection and the width of the stop-band at the two end frequencies can be greatly increased using the microstrip meander line and the nonuniform magnetic field, respectively. The resulting band-pass filters should find applications in frequency-hopping microwave communication and signal processing systems.
Journal: TechConnect Briefs
Volume: 3, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 3
Published: May 8, 2005
Pages: 173 - 175
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topics: Carbon Nano Structures & Devices, Nanoelectronics
ISBN: 0-9767985-2-2