Synthesis and Characterization of Co-Zn Ferrite Nanocrystals for Magnetocaloric Applications

, ,

Keywords: , , ,

Cobalt ferrite (CoFe2O4) is known for its high coercivity, chemical stability and high sensitivity of its Curie temperature (TC) with Zn-doping. A ferrofluid bearing this type of ferrite nanocrystals could be then considered good candidate for magnetocaloric energy conversion applications. Accordingly, the present work addresses the synthesis and magnetic characterization of CoxZn1-xFe2O4 nanoparticles in the ‘x’ range between 0.5 and 1.0. Ferrite nanocrystals were synthesized by conventional coprecipitation method as well as through a modified size-controlled approach where the mixture of reactants was carried out at selected flow-rates. X-ray diffraction analyses confirmed the formation of the ferrite structure in the evaluated composition interval. The average ferrite crystallite size synthesized in the ‘x’=0.5-1.0 range varied from 8.8 nm to 16.2 nm (with no control on flow-rate) and from 9.5 nm to 18.7 nm, when the reactants were mixed at 20mL/min. The magnetization at 2.2T was as high as 63 emu/g (‘x’=0.8) whereas the coercivity varied from 8 Gauss to 334 Gauss with a rising ‘x’. The magnetization and coercivity varied from 31 emu/g to 63 emu/g and 22.9 Gauss to 976 Gauss when the solids were produced at 20mL/min within the same ‘x’ range.

PDF of paper:

Journal: TechConnect Briefs
Volume: 1, Nanotechnology 2009: Fabrication, Particles, Characterization, MEMS, Electronics and Photonics
Published: May 3, 2009
Pages: 113 - 116
Industry sector: Advanced Materials & Manufacturing
Topic: Nanoparticle Synthesis & Applications
ISBN: 978-1-4398-1782-7