Molecular Dynamics Study of Thermally Induced Shear Strain in Nanoscale Copper

,
,

Keywords: , , , ,

We study the effects of thermally induced shear strain and stress in several nanoscale copper systems consisting of about 200k atoms with the effective-medium theory and molecular dynamics method. Both edge and screw dislocations are seen to initiate at the free boundaries on the (111) slip plane. In most cases dislocations are slower than the speed of sound, but a transition to super sonic edge dislocations was observed. In some cases dislocations initiated at the compressive side of the system other than at the tensile side. This was proposed to be caused by the dependence of the stacking fault energy on the state of strain. The results show that initially the stress is concentrated in the corners of the system, and later, when the structure has been plastically deformed, high stress regions are found in the center of the system. The minimum stress and strain at which plastic deformation occurred were 1.2GPa and 4.6%.

PDF of paper:


Journal: TechConnect Briefs
Volume: Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems
Published: April 19, 1999
Pages: 475 - 478
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topic: Modeling & Simulation of Microsystems
ISBN: 0-9666135-4-6