Modeling and simulation of a monolithic self-actuated microsystem for fluid sampling and drug delivery

, ,
,

Keywords: , ,

A novel MEMS-based microsystem including microneedle array with a self-actuated structure for fluid sampling and drug delivery is modeled, designed and simulated. The self-actuating mechanism and the microneedle array are able to be fabricated on a monolithic chip and avoids errors resulting from any bonding process and provides easy mass fabrication. The microsystem is composed of a microneedle array at the center of the microsystem and an actuating mechanisms of symmetrically arranged Z-shaped PZT unimorph benders. The Z-shape benders can enlarge and advanced the distance of the microneedle array, up to 700 m and more in the out-of-plane direction. The simulations show that a large displacement can be accomplished with a relative low actuating voltage. A finite element method analysis was used to simulate the characteristics of the microsystem. The modal resonance of the system has also been simulated. The actuation issue is a great challenge for microneedle commercialization. Few microneedles with actuating mechanisms appear in peer reviewed publications, let alone both microneedle and actuation structures on a monolithic chip. This monolithic microsystem opens up a wide application area for the commercialization of microsystems for fluid sampling and drug delivery.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2008: Microsystems, Photonics, Sensors, Fluidics, Modeling, and Simulation – Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Volume 3
Published: June 1, 2008
Pages: 623 - 626
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topic: Informatics, Modeling & Simulation
ISBN: 978-1-4200-8505-1