Das S.K., Rey A.D.
McGill University, CA
Keywords: microdomain structures, multiphase, phase diagram, phase separation, topological defects
A mesoscopic kinetic model for phase separation in the presence of liquid crystalline order has been formulated, and solved using high performance numerical methods. The thermodynamic phase diagram on temperature-polymer concentration plane indicates the presence of coexistence regions between isotropic and liquid crystalline phases. These regions are itself partition by the phase separation spinodal and the phase ordering spinodal. We characterize the morphologies following temperature quenches in the phase diagram. The scenario is completely different from isotropic mixing since the continuous phase exhibits liquid crystalline ordering. Microdomains of the dispersed phase induce long- and short-range forces affecting the kinetics of the separation and the emerging structures. Presence of topological defects and elastic distortions around the microdomains formed during the phase separation dominate the morphology. The free energy of the system establishes dynamics and correlations of the morphological structures.
Journal: TechConnect Briefs
Volume: 3, Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show, Volume 3
Published: March 7, 2004
Pages: 91 - 94
Industry sector: Advanced Materials & Manufacturing
Topic: Informatics, Modeling & Simulation
ISBN: 0-9728422-9-2