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ABSTRACT

A mesoscopic kinetic model for phase separation in the
presence of liquid crystalline order has been formulated,
and solved using high performance numerical methods. The
thermodynamic phase diagram on temperature-polymer
concentration plane indicates the presence of coexistence
regions between isotropic and liquid crystalline phases.
These regions are itself partition by the phase separation
spinodal and the phase ordering spinodal. We characterize
the morphologies following temperature quenches in the
phase diagram. The scenario is completely different from 
isotropic mixing since the continuous phase exhibits liquid
crystalline ordering. Microdomains of the dispersed phase
induce long- and short-range forces affecting the kinetics of
the separation and the emerging structures. Presence of 
topological defects and elastic distortions around the
microdomains formed during the phase separation dominate
the morphology. The free energy of the system establishes
dynamics and correlations of the morphological structures. 

Keywords: multiphase, phase separation, microdomain
structures, topological defects, phase diagram

1 INTRODUCTION

Multiphase polymer-liquid crystal blends are new 
multifunctional materials with unique electro-optical
properties. The formation process is driven by
thermodynamic instabilities, and the emerging
microstructures reflect the curvature elasticity of the liquid 
crystalline phase. Such multiphase polymer dispersed liquid
crystal (PDLC) makes a new composite material with
unique physical properties that originate from the
orientational ordering of the liquid crystal. Mechanical and 
electro-optical properties of this system are primarily
determined by the collective behaviors of these binary
mixtures. Because when flexible polymers are introduced
into LC’s the electro-optical properties of the system are
considerably affected due to the deformation of the nematic
director field, which can result in nontrivial collective
behaviors, leading to the formation of spatially modulated
structures. Depending on the time scale that controls these
processes, a rich variety of morphologies have been

observed [1-2]. Phase separation of such systems can be
induced either through a thermal quench [3-4] or through
polymerization [5]. Because of the number of 
nonequilibrium processes involved, however, there is a
little theoretical understanding of the factors that control the
domain morphology. A Cahn-Hilliard framework that
allows composition and orientational density to evolve in a
coupled fashion as functions of position and time following
a temperature quench was performed [3]. Their framework
includes the orientational density’s second-order tensorial
nature [6] where free energy of the system contains 
orientational density’s three term gradient expansions. But
details morphological structures, especially the free energy
profiles of the system, characterization of morphological
structures, phase separation and phase transition
mechanism, topological defect structures, etc., remain
unclear yet. 

In this paper we present a nonlocal dynamical model
focusing on the interplay between phase-separation and 
phase ordering kinetics in mixtures of short, liquid crystals
(rigid rods) and long, flexible polymers, as a first step 
towards the rational design and control of the microdomain
morphology. Here we consider fully nonlocal model
without resorting to the three term gradient expansions of 
Landau-type [6] while derived free energy of the system. 
Computationally, this is challenging because it would
require evaluating multiple convolutions at each moment in
time. The advantage of our system is that we can calculate
two order parameters (conserved and non-conserved)
solving two coupled time-dependent equations together
from a microscopic model of polymers and liquid crystals
without loosing any information of order parameters.

2 MODEL FORMULATION

2.1 Thermodynamic phase diagram 

In this section we represent the free energy to construct
the static phase diagrams. According to [7], the free energy
density of polymer-liquid crystal mixtures can be written
as;
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where T is the absolute temperature, bk  is the Boltzmann

constant, S is the ‘scalar’ orientational order parameter of 
the liquid crystals,  is the Flory-Huggin’s interaction

parameter, the terms  and a An45  in  indicates the 

orientation-dependent attractive interactions between the
mesogens

0

and excluded volume interactions between

mesogenic molecules respectively, and  are the 

number of segments on the isotropic (monomer or polymer)
component and the number of segments (axial ratios) on the

mesogen respectively, and  and  are the

corresponding volume fractions, respectively. The first two 
terms in the right hand side of equation (2) represent the
entropy of mixing.  For thermodynamical reasons, the
entropy of mixing must be dominant at high temperatures
and so we can introduce the temperature parameter, ,

defined by

In An
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1 = =
0 b

U k T , where  controls the

miscibility of the two species in the isotropic phase. The 
two terms on the right side of equation (3) represent the free
energy change due to the alignment of the liquid crystals.
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Fig. 1 Phase diagram of the binary mixtures of polymer
and liquid crystals on the temperature–concentration plane 
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As shown by De Gennes and Prost [6] equations (1-5)
predicts the emergence of a stable nematic phase when

. Using the following definitions:
0
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where
a

 represents the relative strength of

interactions, and is the reduced temperature, it is found

that the threshold  gives the following

concentration dependence of the reduced nematic-isotropic
transition (NIT) temperature:
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For simplicity, we denote the isotropic component

composition, , byI  in the phase diagram

(Fig 1). 

2.2 Kinetic equations

The dimensionless total free energy of the system
consists of the bulk free energy and a nonlocal free energy
that controls the cost of gradients in composition and
orientational density, in the absence of surface terms and 
external fields, can be expressed as [8] 
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The dimensionless governing equations of the system
becomes [8] 
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where  is the dimensionless time, t D  is the dimensionless

diffusion parameter, E  is the phenomenological constant,

R  is the coupling parameter, , and  represents
dimensionless Frank elastic parameters respectively and

G P
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Q is a second rank symmetric and traceless tensor [9]. 

Dimensionless Eqs. (8)-(13) are solved by a high
performance numerical scheme with periodic boundary
condition [8].

3 RESULTS AND DISCUSSIONS 

A typical phase diagram of the system on the temperature-
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Fig. 2 Snapshot of the local composition of the system

at a late time step following a quench to; a) point A, b)

point B, c) point C and d) point D for ,25
I

n 2
A

n ,

2.5 , , , , , and 

. Black corresponds to isotropic polymer and white 
corresponds to pure liquid crystals (LCs). The arrows 

represent the local nematic director, and defects are marked
with small solid circles. 
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Fig. 3 Free energy profiles of the system following a 
quench to; a) point A, b) point B, c) point C and d) point D
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concentration plane is shown in Fig. 1 which is computed

with
I

n 25 ,
A

n 2 , and 2.5 . In the figure, ,

denotes the isotropic component composition (polymer
concentration). The coexistence (binodal) curve of the 
phase equilibrium is derived by a double tangent method.
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Details procedure for computing binodal and spinodal 
curves for such a system is documented in the work [8]. We 
study the morphology following four quenches from the 
isotropic, homogeneous phase into the isotropic-nematic 
(IN) coexistence region below the triple point line. Four 
regions are indicated by filled circles and denoted by points 
A, B, C and D respectively in the phase diagram (Fig. 1).  

Fig. 2 represents the snapshot of compositional order of 
the system at points A, B, C and D respectively. In Fig. 
2(a), mass matrix phase is isotropic and droplet phase is 
nematic. In Fig. 2(a) we can see that a pair of topological 
defects forms inside each microdomain due to the presence 
of repulsive Peach-Koehler forces. In our system the 
repulsive force naturally arises from interaction via the 
elastic deformation of liquid crystal [1]. We can see from 
the Fig. 2(a) that orientation inside the droplet is 
perpendicular implying strong normal anchoring of liquid 
crystal molecules at the droplet boundary. Nematic droplets 
must develop defects because the LCs wants to be parallel 
to each other and parallel to the droplet interface too. This 
result agrees quite well with the results reported by Lapena 
et.al [3] (see Fig. 3, [3]). In Fig. 2(b)-2(d), mass matrix 
phase is nematic and microdomain phase is isotropic. In 
Fig. 2(b)-2(d), isotropic microdomains suspended into the 
nematic matrix are surrounded by the topological defects. 
One interesting feature of the defect lattice is its topology. 
Solid lines represent the interconnection between defect 
cores and isotropic microdomains. Defect structures form 
cellular polygonal networks that are mostly four-sided and 
the side of each polygon ends either at the droplet or at 
another defect. Most of the defects are +1/2 disclinations. 
Some of them are +1 disclinations which eventually split 
into two +1/2 disclinations as can be seen from Fig. 2(b) 
and 2(c). In the case of point C (see Fig. 2(c)), 
microdomians are almost positionally ordered whilst they 
form fabrillar networks for the case of point D (see Fig. 
2(d)). 

To get better understanding of underlying physics in 
phase separation processes, we calculated free energy 
profiles at each of the quenching positions of the system. 
Fig. 3 represents the dimensionless homogeneous and 
gradient energy as a function of dimensionless time 
following quenches to the point A, B, C and D. In Fig. 2, 
we can clearly see three distinct regimes, namely initial 
time lag regime (I), growth/relaxation regime (II) and the 
plateau regime (II). In the II regime, the free energy shows 
growth in the gradient energy and decrease in homogeneous 
energy indicating that phase separation and phase ordering 
spinodal decomposition (SD) drives the system to be 
unstable, leading to the breakdown of the interconnected 
domains and formation of isotropic microdomains or 
fabrillar networks. In the crossover regime III, a plateau 
regime corresponding to the onset of the breakdown of the 
interconnected structure (see Fig. 2) appears. The plateau is 
quite pronounced in both of the energy profiles, which 
indicates that phase separation get saturated and signals a 

transition from early stage to intermediate stage of phase 
separation. 

4 CONCLUSION 

A nonlocal mesoscopic dynamic model for multiple phase 
separation, based on a tensor theory, in the presence of 
liquid crystalline order has been formulated, and solved 
using high performance numerical methods. We 
characterized the emerging morphologies following four 
temperature quenches into the physically meaningful 
regions of phase diagram. Phase separations from 
temperature quenches of isotropic binary mixtures start 
with the formation of small domains that grow and coarsen 
as time elapses which leads to polydisperse dispersions of 
growing microdomains that eventually phase separate 
macroscopically. It has been found that ordering 
dramatically affects morphology. Topological defects arise 
due to the elastic distortions around the microdomains 
formed during the phase separation. Defect structures form 
cellular polygonal networks that are mostly four-sided and 
the side of each polygon ends either at the droplet or at 
another defect. The free energy of the system establishes 
the dynamics and correlation of the morphological 
structures. Formation of interconnected (bicontinuous) 
networks or microdomins depends on whether ordering or 
phase separation is the initially dominant process. 
Compared to the experimental and numerical results 
available in the literature, our simulation results may able to 
provide new insights into the understanding of new 
emerging microdomain tropological defect morphology in 
liquid crystalline materials. 
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