Homogeneous Bioluminescence Resonant Energy Transfer On High Density Array Imaging Chip

, , , , ,
,

Keywords: , , , ,

Fluorescent microarray technologies are widely used in molecular biology for studying gene expression, immune detection and drug discovery. Fluorescent assays are very sensitive but present problems with many bio-agents having inherent fluorescence which interfere with assays. In addition, auto-fluorescence and photo-bleaching are common problems in fluorescent detection. Moreover, fluorescence detection requires an expensive external light source coupled to expensive detection equipment. In the field of clinical diagnostics a sensitive and rapid homogeneous immunoassay is needed for harmful bio-agent detection. This paper proposes a rapid and potentially sensitive micro-chip detector based on Bioluminescence Resonance Energy Transfer (BRET). Bio-luminescent assays are exquisitely sensitive and not limited by overlap between fluorescent properties of assay components, and achieve a high signal to noise ratio. To achieve high spatial resolution, a new homogeneous bioluminescence resonance energy transfer method for imaging chip based high density array technology is presented. The distance between donor and acceptor as a way to conjugate fluorescent dyes directly to alkaline phosphatase is minimized in the new work. As a result, the efficiency of resonant energy transfer and achieved spatial resolution is increased. This method allows direct measurement of a fluorescent signal on an imaging chip without conventional optical instruments.

PDF of paper:


Journal: TechConnect Briefs
Volume: 2, Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, Volume 2
Published: May 20, 2007
Pages: 453 - 456
Industry sector: Sensors, MEMS, Electronics
Topicss: Biomaterials, Chemical, Physical & Bio-Sensors
ISBN: 1-4200-6183-6