High Resolution Backside Imaging and Thermography using a Numerical Aperature Increasing Lens

, , , , , ,
,

Keywords: , , ,

Nanoscale imaging of defects in ICs is a great current technological challenge as IC feature sizes continue to shrink. We have developed novel techniques based on a Numerical Aperture Increasing Lens (NAIL) to study semiconductors at very high spatial resolution. The NAIL is placed on the surface of a sample and its convex surface effectively transforms the NAIL and the planar sample into an integrated solid immersion lens. Addition of the NAIL to a standard microscope increases the NA by a factor of square of the index n, to a maximum of NA = n. In silicon, the NA is increased by a factor of 13, to NA = 3.6. The spatial resolution improvement laterally is about a factor of 4 while longitudinally it is a factor of 12.5 corresponding to an overall reduction of the volume of interrogation by a factor of 50. Subsurface solid immersion microscopy can be applied to thermal imaging of blackbody radiation at IR wavelengths. We have designed, built, and demonstrated the use of a subsurface solid immersion microscope with capability for confocal imaging in 3-5µm wavelength range and demonstrated a resolution of 1.4µm, representing the highest resolution subsurface thermography to date.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show, Volume 3
Published: March 7, 2004
Pages: 8 - 10
Industry sectors: Advanced Materials & Manufacturing | Sensors, MEMS, Electronics
Topic: Photonic Materials & Devices
ISBN: 0-9728422-9-2