CNS Regeneration After Chronic Injury Using a Self-assembled Nano Material

, , , , , ,

Keywords: , , , ,

To speed up the process of central nervous system (CNS) recovery after injury, the need for real-time measurement of axon regeneration in vivo is essential to assess the extent of injury, as well as the optimal timing and delivery of therapeutics and rehabilitation. It was necessary to develop a chronic animal model with an in vivo measurement technique to provide a real-time monitoring and feedback system. Using the framework of the 4 P’s of CNS regeneration (Preserve, Permit, Promote and Plasticity) as a guide, combined with non-invasive manganese-enhanced magnetic resonance imaging (MEMRI), we show a successful chronic injury model to measure CNS regeneration, combined with an in vivo measurement system to provide real-time feedback during every stage of the regeneration process. We also show that a chronic optic tract (OT) lesion is able to heal, and axons are able to regenerate, when treated with a self-assembling nanofiber peptide scaffold (SAPNS).

PDF of paper:

Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2011: Bio Sensors, Instruments, Medical, Environment and Energy
Published: June 13, 2011
Pages: 424 - 427
Industry sector: Medical & Biotech
Topics: Biomaterials
ISBN: 978-1-4398-7138-6