Li J., Liu X., He R., Chang Y., Zhang M., Liu X., Jin J., Sun B., Zhao Y., Xing G.
Chinese Academy of Sciences, CN
Keywords: biological effect in vitro, fullerenols, isoelectric points, reactive oxygen species
Fullerenols were known as the major water-soluble derivatives of fullerene that possess particular significance biological effects such as anticancer active and free radical scavengers. We have reported a novel method for purifying nanoparticles of fullerenols, which based on different isoelectric points (pIs). These purified fullerenols with pI 2.81, pI 4.40, pI 5.29 and pI 7.0 were performed to determine the effect of purified fullerenols on cytotoxicity and DNA stability in Raw 264.7 cells. The results were shown in Fig. 1, there no significantly different by statistical product and service solutions (SPSS) analysis. But only the sample of fullerenols with pI 2.81 caused obvious DNA damage to RAW264.7 cells in the continuous buffer system. Consistent with their cytoprotective abilities, these samples can scavenge the stable 2,2-diphenyl-1-picryhydrazyl(DPPH) radical in vitro with the following relative potencies: pI 7.0 > pI 5.29> pI 4.40> pI 2.81 (Fig. 2). The observed differences in free radical-scavenging capabilities support the hypothesis that physicochemical properties, such as surface chemistry induced differences in electron affinity, and degree of aggregation, influence the biological and biomedical activities of fullerenols with different pIs.
Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)
Published: May 12, 2013
Pages: 65 - 68
Industry sector: Medical & Biotech
Topics: Diagnostics & Bioimaging, Sensors - Chemical, Physical & Bio
ISBN: 978-1-4822-0586-2