Strategies for enhanced brain tumor accumulation of magnetic nanoparticles for potential drug delivery

, ,
,

Keywords: , , , ,

The purpose of this study was to elucidate strategies to enhance magnetically mediated accumulation of iron-oxide-based nanoparticles in brain tumors for potential localized delivery of chemotherapeutic agents. In particular, we evaluated administration of the nanoparticles via carotid artery using a catheterization method, not requiring vessel occlusion, as a clinically relevant local alternative to intravenous administration route. However, local administration exposes the neck and head vasculature to elevated concentrations of magnetic nanoparticles. The available electromagnets generate a relatively uniform field density decaying slowly over a broad range and leading to nanoparticle aggregation in the afferent vasculature of the neck. To overcome this problem, we designed a magnetic setup exhibiting sharper gradient and steeper decay of the flux density from the targeted region. Comparison of the two magnetic setups combined with either intracarotid or intravenous routes of administration was conducted in orthotopic 9L-glioma bearing rats. Analysis of nanoparticle accumulation in tumors revealed that with the basic magnetic setup, carotid administration failed to enhance tumor accumulation of nanoparticles compared to intravenous route. In contrast, the alternative magnetic setup resulted in a significant (p=0.018) increase in glioma accumulation of magnetic nanoparticles with carotid (42.7±7.4 nmol Fe/g tissue) versus intravenous (24.3±2.7 nmol Fe/g tissue) administration.

PDF of paper:


Journal: TechConnect Briefs
Volume: 2, Nanotechnology 2008: Life Sciences, Medicine & Bio Materials – Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, Volume 2
Published: June 1, 2008
Pages: 8 - 11
Industry sector: Medical & Biotech
Topics: Biomaterials, Cancer Nanotechnology
ISBN: 978-1-4200-8504-4