Simultaneous Desulfurization and Particulate Removal with ZnO Dispersed Ceramic Filters at High Temperatures


Keywords: , , ,

Flue gas cleaning at high temperatures can increase thermal efficiency with more importantly to simplify processes and lower cost. The main objective of this work was to investigate the feasibility of simultaneous desulfurization and particulate removal using ZnO dispersed ceramic filters (ZnO/CF). At the temperatures of 873-1073 K, removal efficiencies of particulates and H2S (1%) of a simulated syngas with ZnO/CF are greater than 97% (see Table 1 and Figure 1). Note that ZnO on CF has little influence on its filtration efficiency. Observed by synchrotron X-ray absorption near edge structure spectroscopy, about 96% of ZnO on CF can be regenerated with air at 873 K. During desulfurization, the bond distance of Zn-(S)-Zn (the 2nd shell) in ZnO on CF is increased by 0.10 Å if compared with that of Zn-(O)-Zn. Regeneration can resume the Zn-(O)-Zn bond distance to 3.20 Å.

PDF of paper:

Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy (Volume 3)
Published: June 18, 2012
Pages: 619 - 622
Industry sectors: Advanced Materials & Manufacturing | Energy & Sustainability
Topic: Energy Storage
ISBN: 978-1-4665-6276-9