Dislocation Processes and Deformation Twinning in Nanocrystalline Al

, , ,
,

Keywords: , ,

Using a recently developed, massively parallel molecular-dynamics (MD) code for the simulation of polycrystal plasticity, we analyze for the case of nanocrystalline Al the complex interplay among various dislocation and grain-boundary processes during low-temperature deformation. A unique aspect of this work, arising from our ability to deform to rather large plastic strains and to consider a rather large grain size, is the observation of deformation under very high grain-boundary and dislocation densities, i.e., in a deformation regime where they compete on an equal footing. We are thus able to identify the intra- and intergranular dislocation and grain-boundary processes responsible for the extensive deformation twinning observed in our simulations. This illustrates the ability of this type of simulations to capture novel atomic-level insights into the underlying deformation mechanisms not presently possible experimentally.

PDF of paper:


Journal: TechConnect Briefs
Volume: 2, Technical Proceedings of the 2002 International Conference on Computational Nanoscience and Nanotechnology
Published: April 22, 2002
Pages: 283 - 286
Industry sector: Advanced Materials & Manufacturing
Topic: Materials Characterization & Imaging
ISBN: 0-9708275-6-3