Advanced Biofuel Cell Composed of Highly Modified Electrodes for Biomedical Applications

,
,

Keywords: , , ,

A biofuel cell comprised an anode and cathode modified with highly branched polymers, nano Au sol-gel, and reaction specified bioenzymes was constructed. In this study, lactate dehydrogenase (LDH) and glutamate dehydrogenase (GDH) were the enzymes used to modify the anode and cathode respectively for the reaction of lactate and α-ketoglutarate to generate pyruvate and glutamate, and 0.05 V for the overall reaction. Different combinations of highly branched polymers were used for the construction of the electrodes, both modified anode and cathode were characterized individually for their viability and durability. The nano Au sol-gel functioned as an anchoring system that effectively stabilized the degradation of the enzymes, that in turn enabled the specific redox reactions to generate the current flow. Thus, these nano Au sol-gel modified electrodes make a long lasting enzymatic fuel cell possible. The current fuel cell system could only generate a low power potential of 0.05 V; but all the reactants are naturally present in our body, and hence this fuel cell concept can potentially be used as power source for biomedical devices such as pacemaker and insulin pump.

PDF of paper:


Journal: TechConnect Briefs
Volume: 3, Nanotechnology 2011: Bio Sensors, Instruments, Medical, Environment and Energy
Published: June 13, 2011
Pages: 636 - 639
Industry sectors: Advanced Materials & Manufacturing | Energy & Sustainability
Topic: Materials for Oil & Gas
ISBN: 978-1-4398-7138-6