Masters N., Howell L.L.
Georgia Institute of Technology, US
Keywords: bistable, fully-compliant mechanisms, MEMS, pseudo-rigid-body-model
The purpose of this paper is to demonstrate how a combination of models facilitated the development of a new class of small displacement fully-compliant bistable micromechanisms (Self-Retracting Fully-compliant Bistable Micromechanism, or SRFBM). Two different Pseudo-Rigid-Body Models (PRBM) were used in the early stages to determine the basic form of the device. The use of these models allowed bistable configurations to be rapidly identified. Subsequent finite element modeling concentrated on tailoring the devices for specific behaviors. Furthermore, finite elements models were instrumental in predicting the thermal self-retracting behavior of the mechanism. Suitable designs have been fabricated and tested for functionality and endurance. Total travel of the devices is 8.5 mm. Bistability, including on-chip actuation and thermal self-retraction has been demonstrated, as well as fatigue testing in excess of 2 million cycles. On-chip force testing has correlated well with model predictions.
Journal: TechConnect Briefs
Volume: 1, Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems
Published: April 22, 2002
Pages: 302 - 305
Industry sector: Sensors, MEMS, Electronics
Topic: MEMS & NEMS Devices, Modeling & Applications
ISBN: 0-9708275-7-1