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ABSTRACT

Polypyrrole (PPy) is a conducting polymer with a
wide range of applications such as super-capacitors, sen-
sors, batteries, actuators, and neural prosthetics. PPy
is a popular polymer in experimentation not so easily
accessed in computational modeling efforts. As such
modeling and algorithmic improvements are crucial in
its study. Presented here are both a novel coarse grain
model for oxidized PPy and its efficient and scalable
computing implementation of a Monte Carlo study of
the energetics and thermodynamics of the PPy con-
densed phases. Systems containing 103 to 105 particles
have been meticulously implemented in a range of com-
puter platforms ranging from desktop class computing
hardware to high performance clusters equipped with
multiple GPUs. Our implementation utilizes a combi-
nation of CPUs and GPUs depending on system size.
Reported properties are the density, enthalpy, cohesive
energy, compressibility, thermal expansivity, Hildebrand
solubility parameter, bulk modulus, and pair correla-
tion functions at ambient conditions. All properties are
consistent across the studied system sizes and in good
agreement with experimental values if available.
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1 INTRODUCION

Organic metals, also termed conducting polymers,
have promoted a host of novel applications [1]. In par-
allel, more efficient cyber methods were necessary to
predict the thermodynamic, mechanical and electronic
properties of the new polymeric materials. For exam-
ple, the electronic structure of molecular crystals is now
obtained through Density Functional Theory (DFT), a
faster computational approximation than ab initio meth-
ods. However, DFT is limited to a relatively small num-
ber of atoms typically less than 1,000 [2]. To reach more
realistic systems containing more atoms, classical ap-
proaches with parameters based on DFT have increased
in the modeling world. Model potentials are the math-
ematical description of how the particles that compose
the system interact, describing a system atomistically
or coarse grained (CG) by including groups of atoms as

individual entities. CG models permit system size scal-
ing to significantly larger systems [3]. High performance
computing (HPC) methodologies such as Molecular Dy-
namic (MD) and Monte Carlo (MC) combined with CG
modeling are powerful tools for studying the mechanical
and thermodynamical properties of very large systems
of particles.

Algorithmic improvements are crucial in all HPC ar-
eas, whether targeting CPU, GPU or a combination of
the two [4, 5]. Indeed, GPU-GPU processing has be-
come a staple in HPC, both in MC [6] and in MD [7]
implementations. These hardware and algorithmic ad-
vances have permitted the simulation of systems of in-
creasing complexity, size and temporal evolution. In this
brief we present a battery of Metropolis Monte Carlo
(MMC) optimized implementations for a family of novel,
in-house, CG model potentials of oxidized polypyrrole
(PPy). This conducting polymer is used in super-capa-
citors, sensors, batteries, actuators, neural prosthetics,
among other applications. PPy is easy to synthesize,
as well as being low cost; these attributes make PPy a
popular and useful polymer [8].

2 MODEL AND METHODS

The CG model potential for PPy oligomers contain-
ing 12 monomers, termed 12-Py, contains halogen atoms
as dopants. The oligomer monomers are modeled as
a united planar group of atoms with one dipole mo-
ment anchored at its center. When doping occurs, there
is charge transfer between the 12-Py chains and the
dopants. As a result, the oligomers become cations
with a +4 charge and the dopants acquire a -1 charge.
The ratio dopant/oligomer in the mixture considered is
4/1, which is consistent with the experimental synthe-
ses. Figure 1 gives a schematic representation of the
12-Py oligomer in an environment of dopants.

Figure 1: Schematic view of the 12-Py oligomer with four

atomic dopants arbitrarily positioned close to the polymer

chain.

The model potential has two main contributions, in-
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ternal to the 12-Py oligomers (Uintra) and external to
the polymer (Uinter) containing the interactions between
oligomers Upy−py, oligomers and dopants Upy−dop, and
between dopants Udop−dop [9]. Thus,

(1)Utotal = Uintra + Uinter

(2)Uintra = Ubond + Ubend + Utorsion + Ulib + Uelec

+ Udip−dip + Uanti−coil

(3)Uinter = Upy−py + Upy−dop + Udop−dop

Here, Ubond identifies the bonding between contiguous
monomers within an oligomer, Ubend is the angular mo-
tion between two contiguous bonds, Utorsion identifies
changes in the angle between the plane of two con-
tiguous monomers, Ulib pertains to librations within
the monomer plane, Uelec is the Coulomb interaction,
Udip−dip is the interaction between the monomer dipoles
within the oligomer, and Uanti−coil eliminates possible
coiling of the oligomer chain. Meanwhile, the three
terms in Uinter contain sums of electrostatic and dis-
persion interactions. When the interactions within each
of the three terms in Uinter are summed, Eq. 3 reduces
to sum of three pairwise additive functions visualized in
Fig. 2. The parameters for this CG force field for PPy
doped with chlorine atoms were reported in [9].
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Figure 2: The three pairwise potentials that compose the

Uinter contribution to the CG force field of PPy. Parameters

used for the plot depiction correspond to PPy with chlorine

dopants [9].

The term particle will be used herein to identify ei-
ther each monomer of a 12-Py oligomer or a dopant
atom. Systems ranging in size from 1024 to 27648 par-
ticles were explored for calibrating the size scaling effect
on the computational implementation. Simulations were
performed with custom-developed horizontally scalable
GPU accelerated Metropolis Monte Carlo (MMC) im-
plementation and supporting four simulation modes: NVT

(canonical ensemble), NPT (isobaric-isothermal ensem-
ble), plus NVT and NPT Adaptive Tempering MC [10].

The MMC algorithm is inherently serial since the
next step in an MMC simulation depends on the current
step. Efforts of the research were targeting on the par-
allelization as applied to particles interacting through
the model potential as described previously [9]. Paral-
lelization of particle simulations can typically be classi-
fied as one of three types: particle decomposition, do-
main decomposition, and farm or energy decomposition.
The domain decomposition method utilizes a spatial de-
composition approach that allows for simultaneous up-
dates of particles within domains. Simultaneous move-
ment of particles is accomplished by moving particles
that are outside each other’s cutoff radius. The en-
ergy decomposition method achieves parallelization by
splitting the particles into groupings and then calcu-
lating partial energy values for each group. The par-
tial values are combined to determine the total system
energy. The parallelization method utilized here was
a custom-modified energy decomposition that includes
preliminary elements of our previous MMC parallel im-
plementations [11, 12].

The energy decomposition applied to systems of doped
PPy modeled as described above becomes computation-
ally demanding as the system size increases. Hence,
our performance optimization targeted specifically an
efficient calculation of the three pair-additive interac-
tions included in Uinter and depicted in Fig. 2. The
first performance optimization involved multiple com-
bination trials leveraging three computing paralleliza-
tion components when implemented for a computer clus-
ter with multiple nodes: Open MPI for the distributed
memory in a cluster, OpenMP effective within one clus-
ter node for using the intra-node shared memory, and
CUDA for the GPU in each node. The combined ap-
proach of the three-level parallelization scheme was scal-
able to any sized computing platform.

The second optimization step focused on the calcula-
tion of the various terms of the model potential. Instead
of the actual analytical expressions of the terms enter-
ing in Uinter (Eq. 3), a numerical approximation was
implemented consisting of interpolating between pre-
calculated values of the functions in Fig. 2, which were
stored as a multidimensional table. This approxima-
tion resulted in a large execution time improvement.
Polynomial interpolation was adopted due to the quick
evaluation. The several different piecewise interpola-
tion methods implemented were piece-wise linear, Her-
mite polynomials and natural splines. Hermite polyno-
mials and natural splines yielded comparable root mean
square errors (RMSE) of the density, potential energy
and enthalpy. These interpolation methods were custom
implemented to optimize the execution time on both the
CPU or GPU. Natural splines was adopted for produc-
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tion since the associated data tables are less cumber-
some when the piece-wise interpolation interval between
points of 0.001 ao (ao=Bohr radius) was used. Smaller
intervals resulted in increased RMSE of the studied prop-
erties. Once determined, the coefficients of the involved
polynomials were stored in a database, which was loaded
to both the CPU and GPU memory prior to the simu-
lation start.

3 RESULTS

As applied to the energy partition, the paralleliza-
tion strategy is accomplished by partitioning the sum-
mations of the model potential terms over particles into
sum segments, with each sum segment being assigned to
a computational node. Hence, each node evaluates only
a portion of the overall energies associated with the sum
segment it was assigned. Within each node, the combi-
nation of OpenMP and CUDA provides further advan-
tage in the distribution of the computational workload.
The parallelization performance using the customized
energy decomposition approach is shown in Fig. 3 il-

Figure 3: Comparison of MMC processing time per iteration

between GPU and CPU with varying number of threads ver-

sus system size. Depicted are 1 process/32 threads (black as-

terisks), 4 process/8 threads (orange asterisks), 8 process/4

threads (black dots), 16 process/2 threads (red triangles), 32

process/i thread (green squares), 1 process/GPU (blue dia-

monds). The system was PPy doped with Cl atoms [9].

lustrating the processing time of a single MMC passage
over the particles when adopting different loads to the
OpenMP (threads), Open MPI (processors), or GPU.
As evidenced by the the Fig. 3 inset, for a number of
particles below 10,000, the selection of how to combine
processor and thread components is important because
the CPU time may be doubled if care is not taken. As
the system is scaled up in size to many more particles,
the balance processor/thread is still important but not
as damaging. Also evident from Fig. 3 is that the GPU
use gave the best processing time performance. We em-
phasize that the performance metrics shown are for only
one MMC step. In a MMC simulation for obtaining the
physical properties of the PPy system, several millions
of these steps are needed. It is clear that the usage of
GPU acceleration for the adopted energy partitioning
has an excellent size scalability. This effort utilized the
PPy doped with chlorine atoms.

When using multiple nodes in a computer cluster
via openMPI, the workload distribution described pre-
viously would occur per node. Hence, in a multi-node
scenario each node is responsible for the evaluation of
only an assigned portion of the Uinter, and if a GPU is
available, the node will off-load the Uinter evaluation to
the GPU.

The substitution of analytical expressions in Eq. 3
by a table of pre-calculated values with splines interpo-
lation yielded significant performance gains, permitting
the analysis of systems as large as 128,000 particles with
the ability to scale up to even larger system sizes. Fig-
ure 4 evidences the achieved performance improvements

120 

100 

...-... 
80 Vl 

...__,_. 

C 

0 
·-

+-' 

ro 
!ii,_ 

60 QJ 
+-'-

""" 

QJ 

E 
·-

40I-

20 

0 
0 u, � � N N 

0 0 u, 0 u, 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 

Number of Particles 

Figure 4: MMC processing time per iteration versus system

size with Uinter calculated from a table of interpolated val-

ues. Implementation in CPU (gray) and in GPU (orange).

For comparison, the GPU processing time using the analyt-

ical description of Uinter is colored blue.
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obtained when using the two parallelization scenarios,
either CPU alone or combined with GPU as compared
with the best performance depicted in Fig. 3 for GPU
implementation using the analytic description of Uinter.

Preliminary efforts for investigating PPy doped by
fluorine and other halogen atoms are ongoing. Change
of dopant in these polymeric systems implies different
parameters entering in the model potential associated to
Uinter that we are producing based on DFT calculations.
In particular for fluorine, due to chlorine being a heavier
atom, the density of fluorine doped systems would be
about 93% the density of the chlorine doped system that
we have reported as 1410 kg/m3 [9]. Figure 5 shows the
calculated density and enthalpy profiles for PPy with
fluorine dopants. As observed, the density is clearly in
the range of the expected value and the enthalpy ensures
the system has been equilibrated.
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Figure 5: Density and enthalpy as a function of the MMC

steps of a PPy system with fluorine dopants containing 1024

particles at 300 K and 1 atm.

4 CONCLUSION

We have performed a computational parallelization
optimization of system containing a large number of
PPy oligomers with atomic dopants by combining a dis-
tribution of loaded tasks between the CPU threads and a
GPU installed in nodes of a computer cluster. The per-
formance acceleration has been improved dramatically
by creating a multidimensional table of values that can
be interpolated to represent the interactions between
particles instead of calculating these interactions from
their analytical expressions. The performance gain is
about 9.8 times the required execution time for the pre-
vious GPU implementation and 342 times better than

the CPU only implementation. Our current comput-
ing approach is scalable with system size allowing for
simulations of systems with more than 130,000 parti-
cles. Currently, this study is being extended to obtain
the coarse grained model potential for PPy doped with
halogen atoms other than chlorine.
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