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ABSTRACT 

 
Nonalcoholic fatty liver disease is a global pandemic. 

This study investigated whether ultrasound point shear 
wave elastography measurements could predict hepatic fat 
quantification using a machine larning (ML) algorithm 
trained with fat quantification on MRI. 186 exams from 
Stanford and 50 from the University of Wisconsin were 
analyzed. Hepatic fat values were quantized into intervals 
of 5%, and a multi-model support vector machine (SVM) 
was run with 10 measurements of shear wave velocity as 
inputs. For each fat quantification level, a dedicated SVM 
was trained; the overall fat prediction was determined by 
fusing model results. Validation was via leave-one-out 
cross validation. Pearson correlation was calculated 
between predicted and actual fat quantification. There was a 
high correlation between ML-predicted fat quantification 
and  MR-based fat quantification for Stanford (r=0.98) and 
Wisconsin (r=0.95) data. ML correctly predicted the fat 
quantification interval for most subjects.  
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1 INTRODUCTION 
 
Chronic liver disease due to nonalcoholic fatty liver 

disease (NAFLD) is a global health pandemic due to an 
increase in metabolic risk factors linked to the increasing 
prevalence of obesity worldwide [1][2], and 30% of the 
population is affected in the United States and Europe. It 
affects over one billion people worldwide and is projected 
to become the leading cause of liver transplantation [3][4]. 
Early diagnosis of NAFLD is crucial, as it can be treated 
before it eventually leads to hepatic inflammation, cirrhosis, 
liver failure, or hepatocellular carcinoma; in particular, it 
can be treated by addressing the underlying cause, whether 
through weight loss or insulin-sensitizing or antioxidant 
agents [5][6].  

 
1.1 Hepatic Fat Quantification 

Quantifying hepatic fat content was historically 
performed via histology, with an intracellular accumulation 

of fat droplets exceeding 5% of hepatocytes on liver biopsy 
being a gold standard for diagnosing hepatic steatosis 
[5][7][8]. The NASH Clinical Research Network scoring 
system for grading parenchymal invovement of steatosis 
includes the following categories: S0 (<5%), S1 (5-33%), 
S2 (34-66%), and S3 (>66%) [9]. However, biopsy is 
invasive and comes with its own set of risks, such as 
bleeding and infection, and there are limitations of biopsy 
such as sampling error. Hence, noninvasive methods to 
diagnose steatosis are warranted. Conventional ultrasound 
and computerized tomography are limited by low 
sensitivity and specificity, especially for mild steatosis, as 
well as the lack of a reliable quantification of steatosis 
[4][8]. Qualitative methods for assessing hepatic fat include 
hepatic echogenicity, ultrasound beam attenuation at greater 
depth, and poor visualization of either the venous structures 
or the diaphragm [10]. Magnetic resonance imaging 
measuring the proton density fat fraction (MRI-PDFF) has 
been shown in multiple studies to have a high correlation 
with histology-based steatosis grade and to have a high 
accuracy for quantifying steatosis, and it has been adopted 
as a reference standard for clinical trials; however, it is 
expensive and not widely available worldwide [4][11-15]. 

 
1.2 Ultrasound Elastography 

Ultrasound elastography (USE) techniques such as point 
shear wave elastography (pSWE) and 2D shear wave 
elastography (2DSWE) are used in clinical practice for the 
management of patients with chronic liver disease. While 
USE has shown high accuracy for grading hepatic fibrosis 
[16], the effect of hepatic steatosis on USE measurements is 
unclear [17][18], and only a few studies have evaluated 
shear wave properties related to dispersion or viscoelastic 
models [18][19]. More studies are warranted to evaluate the 
potential for assessing hepatic steatosis by analyzing 
ultrasound properties such as shear wave elastography 
velocities. Machine learning, to date often applied to 
medical imaging data [20], may facilitate and improve this 
analysis, as it can potentially uncover patterns that are not 
readily perceived by human observers. 

 
1.3 Study Purpose 
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The purpose of this study was to determine if shear 
wave velocity measurements using ultrasound point shear 
wave elastography can be used to predict hepatic fat 
quantification using a machine learning (ML) algorithm 
trained with fat quantification from MRI. 

 
2 MATERIALS AND METHODS 

 
This study was HIPPA-compliant and IRB-approved. 

Between March 2014 and July 2017, 186 examinations 
from 113 patients had results from both point shear wave 
elastography from a Siemens ultrasound scanner (Siemens 
Healthineers, Erlangen, Germany) and fat quantification 
from MRI. Fat quantification values were quantized into 
intervals of 5%, and a multi-model support vector machine 
(SVM) algorithm with the Gaussian radial basis function 
kernel was run with ten measurements of shear wave 
velocity as inputs. For each fat quantification interval, we 
trained a dedicated SVM model, and machine-learning 
based fat prediction was determined by fusing the results 
from all models. Intervals of 5% were chosen since the 
standard steatosis threshold is 5%. Results were validated 
using leave-one-out cross-validation. Next, for each 
quantization interval, the p-value for the fat prediction, as 
determined by the SVM, was calculated using a Wilcoxon 
rank-sum test. Finally, the correlation between predicted 
and actual fat quantification was done via Pearson 
correlation.  

An additional similar such dataset was obtained from 
the University of Wisconsin for comparison, which 
contained 50 subjects, and a similar procedure was 
performed [5]. 

 
3 RESULTS 

 
3.1 Stanford Dataset 

For the Stanford dataset (Figure 1), there was high 
correlation between predicted fat quantification from 
ML and MRI-based fat quantification (r = 0.98). The 
dynamic range for MRI-based fat percent was 
between 0% and 35% for the Stanford dataset; thus, 
five SVM models had enough data samples to be 
trained. There was good score separation in intervals 
under 20% (p < 10-9), whereas intervals greater than 
20% had insufficient samples in this dataset (Figure 
2). Finally, for each ultrasound examination (sample 
index), the predicted fat quantification interval was 
determined, and there was a high accuracy in 
predicting the correct fat quantification interval. 

 
3.2 Wisconsin Dataset 

As the Wisconsin dataset was smaller, it had a 
slightly lower Pearson correlation (r=0.95), once again 

with fewer data points at higher (>20%) fat 
quantification levels (Figure 3). Machine learning 
correctly predicted the fat quantification interval for 
most subjects. 
 
A) 

 
B) 

 

Figure 1: Stanford Dataset. A) Pearson correlation between 
MR-fat percent and the machine learning prediction. B) 

MR-fat percent (black) and predicted fat interval by 
machine learning (blue). 
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Interval p-value N 
0-5 2.05e-38 108 
5-10 2.10e-10 44 
10-15 2.34e-7 12 
15-20 1.43e-10 13 
20-25 I.D. 3 
25-30 I.D. 1 
30+ 1.52e-05 5 

Figure 2: Stanford Dataset. Strength of predictions at each 
fat quantification interval using the Wilcoxon rank-sum 

test. I.D. = Insufficient Data. 

A) 

 
 
B) 

 

Figure 3: Wisconsin Dataset. A) Pearson correlation 
between MR-fat percent and the machine learning 

prediction. B) Comparing quantized MR-fat interval (blue) 
and machine-predicted fat interval (red). 

 
4 DISCUSSION 

 
Overall, this study showed that using data from point 

shear wave elastography in conjunction with machine 
learning was able to derive MRI-determined fat 
quantification levels.  This was a notable result, as shear 
wave velocity has typically been used to predict hepatic 
stiffness rather than fat quantification. It is possible that 
there is informationn contained in the distribution of shear 
wave velocities that machine learning is able to leverage in 
order to predict hepatic fat content. 

 
4.1 Prior Studies 

Quantitative ultrasound has been studied for hepatic fat 
quantification in NAFLD, and parameters include 
hepatorenal index, speed of sound, attenuation coefficient, 
backscatter coefficient, controlled-attenuation parameter, 
and shear wave dispersion. One preliminary study of speed 
of sound in 17 patients resulted in an AUROC curve of 0.94 
compared to MRI-PDFF and 0.95 compared to biopsy for 
classifying healthy versus fatty liver [21]. One 60-patient 
study employing attenuation coefficient found it to have a 
mean AUC of 0.79 for distinguishing between grade S1 
versus S2+ steatosis [22]. This same 60-patient study found 
backscatter coefficient to have a mean AUC of 0.85 to 
distinguish between S1 versus S2+ steatosis. A meta-
analysis of 19 studies found that the controlled-attenuation 
parameter (CAP) had an AUROC curve of 0.82 to 
distinguish between grade S1 versus S2+ steatosis [23]. 
However, CAP was not as accurate as MRI-PDFF [24][25]. 
Finally, shear wave dispersion showed an AUROC of only 
0.47 [26]. Overall, while some of these quantitative 
ultrasound studies have been promising, many have 
involved small datasets or required non-standard ultrasound 
equiptment. 

A few studies have explored using machine learning for 
ultrasound fat quantification. One study with 63 patients 
used deep learning to classify exams as either normal or 
fatty liver with 100% accuracy [27]. Another study with 55 
patients utilized an Inception-ResNet-v2 network to classify 
exams as either normal or fatty liver, with an AUC of 0.98 
[28]. Unlike those studies, this study sought to provide a 
hepatic fat quantification level, rather than simply 
classifying liver as normal versus abnormal. In addition, it 
was performed on datasets from two institutions. 

 
4.2 Limitations and Future Directions 

Regarding study limitations and future directions, one 
limitation was the sample size of this study. A future study 
on a larger cohort of patients from a more diverse array of 
institutions is warranted. In addition, this study specifically 
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looked as shear wave velocity as the input to ML to predict 
MRI-determined fat quantification. A future study could 
make use of additional quantitative ultrasound parameters 
to investigate the extent to which they impact performance.  

 
5 CONCLUSIONS 

 
Machine learning, with shear wave velocity 

measurements from ultrasound point shear elastography as 
inputs, can be used to predict hepatic fat percent, which 
correlates well with MRI-determined fat quantification 
levels. Additional investigation and training with a bigger 
dataset are necessary to further validate the robustness of 
this approach. 
 

6 ACKNOWLEDGEMENTS 
 
We would like to thank Professor Scott Reeder for 

providing the Wisconsin dataset for comparison. 
 

REFERENCES 
 
[1]  H. S. Leitao, S. Doblas, P. Garteiser, G. d'Assignies, 

V. Paradis, F. Mouri, C. F. Geraldes, M. Ronot and 
B. E. Van Beers, Radiology 283 (1), 98-107 (2017). 

[2]  S. C. Lin, E. Heba, T. Wolfson, B. Ang, A. Gamst, 
A. Han, J. W. Erdman, Jr., W. D. O'Brien, Jr., M. P. 
Andre, C. B. Sirlin and R. Loomba, Clin 
Gastroenterol Hepatol 13 (7), 1337-1345 e1336 
(2015). 

[3] R. Loomba, A. J. Sanyal, Nat Rev Gastroenterol 
Hepatol 10 (11), 686-690 (2013). 

[4]  M. R. Charlton, J. M. Burns, R. A. Pedersen, K. D. 
Watt, J. K. Heimbach, R. A. Dierkhising. 
Gastroenterology 141 (4), 1249-1253 (2011). 

[5] H. Kramer, P. J. Pickhardt, M. A. Kliewer, D. 
Hernando, G. H. Chen, J. A. Zagzebski and S. B. 
Reeder, AJR Am J Roentgenol 208 (1), 92-100 
(2017). 

[6]  S B. A. Neuschwander-Tetri, Clin Liver Dis 13 (4), 
649-665 (2009). 

[7]  M. Blachier, H. Leleu, M. Peck-Radosavljevic, D. 
C. Valla and F. Roudot-Thoraval, J Hepatol 58 (3), 
593-608 (2013). 

[8]  Z. Zhang, G. Wang, K. Kang, G. Wu and P. Wang, 
Sci Rep 6, 32875 (2016). 

[9]  D. E. Kleiner, E. M. Brutt, M. V. Natta, C. Behling, 
M. J. Contos, O. W. Cummings, L. D. Ferrell, et al., 
Hepatology 41 (6), 1313-1321 (2005). 

[10]  A. E. Joseph, K. C. Dewbury, P. G. McGuire, The 
Br J Radiol 52 (615), 184-188 (1979). 

[11] C. Caussy, S. B. Reeder, C. B. Sirlin and R. 
Loomba, Hepatology 68 (2), 763-772 (2018). 

[12]  I. S. Idilman, H. Aniktar, R. Idilman, G. Kabacam, 
B. Savas, A. Elhan, A. Celik, K. Bahar and M. 
Karcaaltincaba, Radiology 267 (3), 767-775 (2013). 

[13]  A. Tang, J. Tan, M. Sun, G. Hamilton, M. Bydder, 
T. Wolfson, A. C. Gamst, M. Middleton, E. M. 
Brunt, R. Loomba, J. E. Lavine, J. B. Schwimmer 
and C. B. Sirlin, Radiology 267 (2), 422-431 
(2013). 

[14] M. Di Martino, K. Koryukova, M. Bezzi and C. 
Catalano, Children (Basel) 4 (8) (2017). 

[15] M. Noureddin, J. Lam, M. R. Peterson, M. 
Middleton, G. Hamilton, T. A. Le, R. Bettencourt, 
C. Changchien, D. A. Brenner, C. Sirlin and R. 
Loomba, Hepatology 58 (6), 1930-1940 (2013). 

[16] Y. Lurie, M. Webb, R. Cytter-Kuint, S. Shteingart 
and G. Z. Lederkremer, World J Gastroenterol 21 
(41), 11567-11583 (2015). 

[17] G. Ferraioli, C. Tinelli, B. Dal Bello, M. Zicchetti, 
G. Filice, C. Filice and G. Liver Fibrosis Study, 
Hepatology 56 (6), 2125-2133 (2012). 

[18] K. J. Parker, A. Partin and D. J. Rubens, Ultrasound 
Med Biol 41 (5), 1481-1487 (2015). 

[19] T. Deffieux, J. L. Gennisson, L. Bousquet, M. 
Corouge, S. Cosconea, D. Amroun, S. Tripon, B. 
Terris, V. Mallet, P. Sogni, M. Tanter and S. Pol, J 
Hepatol 62 (2), 317-324 (2015). 

[20] B. J. Erickson, P. Korfiatis, Z. Akkus and T. L. 
Kline, Radiographics 37 (2), 505-515 (2017). 

[21] M. Imbault, A. Faccinetto, B. Osmanski, A. Tissier, 
T. Deffieux, J. Gennisson et al., Phys Med Biol 62 
(9), 3582-3598 (2017). 

[22] J. S. Paige, G. S. Bernstein, E. Heba, E. A. C. 
Costa, M. Fereirra, T. Wolfson, A. C. Gamst, et al., 
AJR Am J Roentgenol 208 (5), W168-W177 
(2017). 

[23] T. Karlas, D. Petroff, M. Sasso, J. Fan, Y. Mi, V. de 
Ledinghen, J Hepatol 66 (5), 1022-1030 (2017). 

[24] K. Imajo, T. Kessoku, Y. Honda, W. Tomeno, Y. 
Ogawa, H. Mawatari, Gastroenterology 150 (3), 
626-637. 

[25] C. C. Park, P. Nguyen, C. Hernandez, R. 
Bettencourt, K. Ramirez, L. Fortney, et al, 
Gastroenterology 152(3), 598-607. 

[26] C. T. Barry, B. Mills, Z. Hah, R. A. Mooney, C. K. 
Ryan, D. J. Rubens, and K. J. Parker, Ultrasound 
Med Biol 38 (2), 175-182 (2011). 

[27] M. Biswas, V. Kuppili, D. R. Edla, H. S. Suri, L. 
Saba, R. T. Marinhoe, J. M. Sanches, and J. S. Suri, 
Comput Methods Programs Biomed 155, 165-177 
(2017). 

[28] M. Byra, G. Styczynski, C. Szmigielski, P. 
Kalinowski, L. Michalowski, R. Paluszkiewicz, et 
al., Int J Comput Assist Radiol Surg 13 (12), 1895-
1903 (2018). 

108 TechConnect Briefs 2021, TechConnect.org, ISBN 978-0-578-99550-2




