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ABSTRACT 

 
The search for novel magnetic phases requires efficient 

quantitative microstructure analysis to extract 

microstructural information and to correlate it with its 

intrinsic magnetic parameters. Kerr micrographs of magnets 

hold vital information for analysing the distribution of 

grains and magnetic domain structures in the sample and 

when compared to the Electron Backscatter Diffraction 

(EBSD) approach for grain analysis, Kerr microscopy 

(KM) requires less time for sample preparation, image 

acquisition and material analysis. However, due to the 

complex microstructural features, it is not feasible to use 

traditional approaches of image analysis for extracting this 

information. In this paper, we have developed a robust and 

time-efficient deep learning-based model for the extraction 

of microstructural information in the NdFeB sintered 

permanent magnets from Kerr microscopy images with 

high accuracy and compared its performance with EBSD 

output and with manually hand-labelled dataset prepared by 

a subject expert. 
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1 INTRODUCTION 
 

Functional materials are the ones that have the ability to 

perform a certain ‘function’ under a determined stimulus. 

This function includes electric, magnetic and optical 

properties. Classification of functional materials based on 

their function can be grouped into magnetic materials, 

semiconductors, ionic conductors, superconductors, 

dielectrics, pyroelectrics, piezoelectric, ferroelectrics, 

electro-optics and ferroelectric relaxors. The knowledge of 

the relationships between composition, structure, 

processing and properties helps in the development of 

improved materials for known applications as well as for 

new uses. Materials scientists, chemists and physicists are 

in search of these relationships for many years by 

characterization of bulk properties of functional material 

properties and describing them with the theoretical models 

until recent past. Nowadays having knowledge about 

relationships between compositions, microstructure, 

processing and its macroscopic properties is the priority. [1] 

One such functional material are NdFeB type magnets 

which are found in a wide range of applications such as 

power generation and transmission. The advancement of 

the automotive industry is highly dependent on permanent 

magnet motors for their hybrid and electric vehicles. 

Permanent magnet motors are highly efficient because of 

their lightweight construction and simple design. Other 

possible applications include wind turbine generators, e-

bikes, computer hard disc drives. [2] 

NdFeB magnets contain a large quantity of 

ferromagnetic iron and have the highest energy product 

among permanent magnetic materials. To get a better 

insight into the properties of magnetic materials, it is 

important to study the microstructural behaviour such as 

phase distribution, alignment of magnetic domain patterns 

and grain size distribution. During manufacturing the 

(Nd,RE)FeB-particles (RE = rare earth) are aligned with 

their magneto-crystalline anisotropy axis parallel to an 

external magnetic field which produces a strong preferential 

orientation distribution in this direction to reach the 

maximum possible remanence of the magnetic material. 

Ideally, the aligned grains are separated by a thin grain 

boundary phase, which forms upon liquid phase sintering 

and in solidified state minimizes the magnetic influence of 

one grain on another.  During the sintering process, grain 

growth can occur in an undesirable manner and lead to 

abnormal grain growth. So, the monitoring of the grain size 

distribution is a part of quality assurance in magnet 

production. Sintered magnets can furthermore contain pores 

and rare earth oxide particles, which lead to the diminished 

volume fraction of the permanent magnetic phase and thus 

to lowered remanence. In the demagnetized state, the net 

magnetization of a grain is zero. This state is characterized 

by the formation of regions of uniform but opposite 

magnetization within the grain, which are called magnetic 

domains). [3] 

Figure 1 shows an image acquired using a light optical 

microscope (LM), Kerr microscope and scanning electron 

microscope (SEM) with EBSD map. LM images gives 

better information of different phases in the alloy, KM 

images shows the distribution of grains and magnetic 

domain structures of each grain, and SEM-EBSD technique 

provides information on grain size distribution as well as 

texture information or orientation of each grain [4]. 

However, when compared to the LM or KM, acquiring 

SEM data for magnet alloys requires more effort and is 

time-consuming. As mentioned earlier that grain analysis is 

important for quality assurance and therefore an attempt has 

been made to obtain grain size distribution and magnetic 

domain information from the KM images using deep 
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learning techniques as traditional image processing 

techniques fail to extract grains from such images and 

feature-based machine learning techniques are not robust 

enough to be used for different magnetic alloys. Further, 

KM has the advantage of being relatively inexpensive and 

able to handle a large range of magnetic alloys. 

 

            
 

Figure 1 shows the microstructure of NdFeB sintered 

permanent magnet acquired using optical light microscopy 

showing different phases, Kerr microscopy image showing 

grains and orientation of magnetic domain structures 

highlighted in yellow, scanning electron microscope with 

electron backscatter diffraction map for texture or grain 

orientation information. 

 

2 RELATED WORK 
 

In the case of the KM images of NdFeB sintered 

permanent magnet alloys, the traditional machine learning 

approaches fail to classify the microstructures effectively 

due to the presence of magnetic domain structures with 

grey values in very close range. Pusch et al. [5] developed a 

semi-automatic approach to classify domain structures in 

magnet samples from correlative microscopy using Kerr 

micrograph and light optical micrograph. The correlative 

images were overlapped onto each other to find grain 

boundaries using threshold-based image segmentation. This 

approach also requires the user to prepare the sample with 

special attention so that grain boundaries are partially 

visible under optical light microscope and involves a 

human intervention to map partially visible grain 

boundaries. 

In border context, grain boundary detection in materials 

microscopy is similar to the edge detection task in 

biomedical or natural images [6] [7]. There have been many 

state of the art DL models for such use cases and have 

proven to be effective on non-microscopy images of 

materials samples. Since these models are not trained on 

materials microscopy images, they fail to detect grain 

boundaries or edges in KM images of magnet samples. 

The current approach for the grain boundary detection 

from KM images involves the user with subjective 

knowledge to manually trace the grain boundaries, apply 

traditional image processing techniques to post-process and 

quantify the grain size distribution. This approach generates 

results with high accuracy because of the involvement of 

the subject expert but consumes a lot of time and is highly 

dependent on human experts. This would mean that results 

may vary from one user to another depending on their 

subjective knowledge. 

 

3 EXPERIMENTS 
 

3.1 Materials and dataset 

The dataset consists of a commercially available NdFeB 

sintered permanent magnet which is isotropic in nature. The 

sample used for experiments are acquired at 1000x 

magnification under a Zeiss AxioImager.M2 microscope 

with 10000ms exposure time and Kerr effect was visualized 

with a polarizer-analyser pair with 88º angle between the 

planes of polarization. The same sample was manually 

hand-labeled and a correlative EBSD map using a Zeiss 

Sigma 300 VP, EBSD was generated which is the reference 

or ground truth for comparing the performance of the 

developed models in this paper. 

 

3.2 Machine learning and deep learning 

model for grain size analysis from Kerr 

microscopy images 

A feature-based traditional machine learning approach 

was trained for the extraction of grain boundaries from Kerr 

images of magnet samples. This approach involved 

extraction of image features like HSV, RGB channels as 

colour features, bilateral filter, the difference of Gaussians 

and Sobel filters as edge features and median filter along 

with structure tensors as texture features. A random forest 

classifier with Gini function to measure split, maximum 

tree depth of 100 and out-of-bag score to generalize the 

model accuracy was tunned. This model achieved an f1 

score of 0.93 but was highly sensitive to the change in the 

contrast of the KM images. This is because the model has 

been trained on hand crafted features and therefore is 

effective when applied on images that appear to have 

similar image features to that of images used for training 

the model. 

To overcome this drawback, a U-net model with 

efficientnetb3 as the backbone, softmax activation function, 

Adam optimizer, binary cross-entropy (BCE) as loss 

function, Intersection over Union (IoU) and f1 score as 

performance metrics was trained for 250 epochs with a 

batch size of 4 and a learning rate of 0.0001. U-net has 

proven to be effective even on small datasets and we have 

used 17 images for training. The size of each image was 

512x512 pixels and to prevent overfitting and increase 

robustness, the data augmentation technique was adopted. 

This includes transformations such as horizontal flips, 

affine transforms, perspective transforms, contrast 

manipulations, addition of Gaussian noise and image 
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blurring. The pre-processing and post-processing steps for 

random forest classifier and U-net model involves the 

removal of artefacts and morphological operations to 

remove noise from predicted images respectively.  

 

3.3 Magnetic domain structure analysis 

Magnetic domain structures have a significant amount 

of information that affects the intrinsic properties of the 

magnet sample. Further, the appearance of the domain 

patterns is indicative of the orientation of the grains in two-

dimensional space as seen in figure 2. The SEM-EBSD 

approach is one of the widely adopted tools for measuring 

the orientation of grains in the magnet samples. [4] The 

effective detection of grain boundaries using the developed 

model assists the user to have a closer insight into each 

grain and hence, it is feasible to analyse magnetic domain 

structures from KM images. 

 

           
 

Figure 2 shows the extracted grains from the magnet 

sample and the magnetic domain structures as binary 

image. a) grain with closure domain structure and having 

preferential theta axis pointing out of the plane, (b) and (c) 

grains with stripe domain structure with theta axis pointing 

along the plane. 

 

A supervised regression model was trained on features 

extracted from the grains and their magnetic domain 

structures to predict the orientation of grains within the 

sample. Haralick parameters [8] as texture features were 

extracted from each grain. Further, the domain structure 

from each grain was extracted using automatic threshold-

based image segmentation followed by measuring the 

morphological parameters such as area fraction, aspect ratio 

and longest domain pattern within the grain. In addition to 

these morphological parameters, shape features such as 

Zernike moments [9] were calculated for patterns in each 

grain. The ground truth or labels for training the model 

were obtained from the correlative EBSD maps that give 

information on the orientation of each grain. The 

orientation of each grain from EBSD is represented as phi1 

(ϕ1), phi (φ) and phi2 (ϕ2). For the experiments here, the 

new coordinate system which excludes phi2 was adopted 

because the information needed to learn phi2 from 2D Kerr 

images was not available. In the new coordinate system the 

range of phi1 has been reduced from 0º-360º to 0º-180º and 

it is referred to as theta (θ). Whereas, phi orientation ranges 

from 0º-90º and it has been transformed to rho (ρ) but has 

the same range as phi. The regression model is trained to 

predict theta and rho for each grain in the sample. 

 

4 RESULTS AND DISCUSSION 
 

To measure the effectiveness of the developed models 

statistically, the results from ML and DL approach was 

compared with reference data. The reference data includes 

hand labelled results by a subject expert and an EBSD map 

generated using correlative microscopy. 

 

4.1 Grain size analysis 

Figure 3 shows the area-weighted and number-weighted 

grain size distribution based on equivalent circle diameter 

(µm) for test sample NdFeB using a trained random forest 

classifier, a trained U-net model and the manual approach. 

Additionally, we have the grain size distribution from 

EBSD for the same sample to evaluate the accuracy of the 

manually generated results as it is the reference or ground 

truth. It is observed that the area under the area-weighted 

distribution and frequency-weighted curve between the 

manual and EBSD approach is 1.4 %, and 0.5 % 

respectively. The difference is less than 2 % and therefore 

having a manual approach as a reference for comparing the 

performance of trained models is productive because 

generating a correlative EBSD map is a challenging and 

time-consuming task. 

 

 
 

Figure 3 shows the number-weighted and area-weighted 

grain size distribution curve obtained from the manual 

approach, the EBSD approach, the trained random forest 

classifier and the trained U-net model for the NdFeB test 

sample acquired at 1000x magnification under Kerr 

microscope. 

 

The random forest classifier model differs from the 

reference by 1.9 % and the U-net model by 1.5 % for the 

area-weighted grain distribution curve. Similarly, the 

deviation of the number-weighted grain distribution curve 

is 2.5 % for the random forest model and 1.9 % for the U-

net. The performance of both models is close to the 

reference data with the U-net model having better 

performance than the random forest classifier. However, it 
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has been observed that the trained feature based ML 

approach is highly sensitive to the contrast variation in the 

acquired image and also involves the user to frequently 

update the training dataset to make it work effectively on 

different magnetic alloys. In the case of the developed U-

net model, the information required to train the model in the 

form of image features is performed automatically by the 

model and with the use of data augmentation, the 

robustness of the model to perform on contrast varying KM 

images is achieved. 

 

4.2 Magnetic domain structure analysis 

Figure 4 shows the comparison between the orientation 

of grains obtained from the trained regression model and 

the EBSD approach. The theta and rho for each grain in the 

sample are obtained and plotted as cumulative and absolute 

frequency distribution curves with the calculation of the 

cumulative distribution function (CDF) from the probability 

distribution function (PDF). The difference in the 

interquartile distance (IQD) , Q25, Q50 and Q75 between 

measured EBSD and predicted values (theta and rho) 

suggests that the error is less than 10 %. 

 

 
 

Figure 4 shows the comparison between the measured 

EBSD theta (θ) and rho (ρ) values against the predicted 

values for NdFeB sample. The IQD, Q25, Q50 and Q75 

values are displayed for direct comparison for values. 

 

Further, when compared to theta the predictions for the 

rho values are in very close range to the measured EBSD 

values. One of the factors which are responsible for the low 

precision for predicted theta values is the presence of 

closure domain structures in the sample. The regression 

model developed has limitations when it comes to the 

closure domain structures as it performs with less 

confidence on grains with closure domain structures. This is 

because the features used for training the model are biased 

towards stripe domain structures and therefore more 

information on closure domain structures is needed to 

create an unbiased training dataset for the orientation 

prediction model. However, the developed method can be 

adopted for analyzing the sample with stripe domain 

structures. 

5 CONCLUSIONS 
 

In this paper, we have explored the possibilities of using 

a traditional feature-based machine learning approach and a 

advanced deep learning approach for automated grain size 

analysis and predicting the orientation of detected grains 

from Kerr microscopy images. The trained U-net model has 

achieved good accuaracy in terms of IoU score of 0.94 and 

proved to be robust against the different NdFeB permanent 

magnetic alloys. The major advantage of such a model is 

that it requires less time for analysing the large samples 

when compared to EBSD and the manual approach. 

Further, the regression model to predict the grain 

orientation with the help of domain structure information 

has shown that it is feasible to get first hand information of 

the orientation of garins in large samples with Kerr 

microscopy images. Improving the prediction accuracy of 

theta values by incorporating the more information to the 

regression model in the form of additional feature set has 

been identified as the part of further research. 
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