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ABSTRACT 

The elastic scattering of a non-spin-polarized electron wave 

on a film containing three ferromagnetic nanolayers 

separated by nonmagnetic layers is considered. Materials of 

the layers can be chosen so that the potential relief of the 

structure contains three identical barriers separated by non-

magnetic quantum wells. We assume that the induction 

vectors ( )1,2,3iB i =  of the internal magnetic fields of the 

barriers are parallel to the surfaces of the nanolayers and 

form, respectively, the angles 1 20, ,   with a certain 

direction ( z  axis, 1B z ), that is, are  noncollinear in 

general. It is shown that the transport characteristics of the 

structure, such as: the transmission coefficient and the 

degree of spin polarization of the transmitted wave are 

functions with double periodicity over the angles 1  and 2

. In addition, the dependence of these characteristics on one 

of the angular variables and the asymptotic momentum 

electron for a fixed value of the second angular variable was 

investigated. 

Keywords: spin-dependent transport, double 

noncollinearity, transfer-matrix, partial amplitudes, internal 

magnetic field, potential relief 

 

1 INTRODUCTION 

Quite a lot of papers [1-5] are devoted to solving the main 

problems of spintronics - the creation and control of a spin-

polarized current. In this regard, we have proposed the use 

of layered systems (films) containing ferromagnetic 

nanolayers, separated for example by non-magnetic metal 

layers. The potential relief of these structures is a series (a  

 

chain) of identical magnetized barriers separated by non-

magnetic quantum wells. Each of the barriers is 

characterized by its own internal magnetic field induction.  

The magnetizations of the barriers are autonomous, that is, 

we will assume that the exchange interaction between the 

two nearest barriers is missing. The set of vectors of internal 

fields, in general, are non-collinear or non-coplanar, and 

their spatial orientations are determined by a certain number 

of angular degrees of freedom. This leads to the fact that the 

elastic scattering of the electron wave on such a system 

occurs (happens) through two channels - without spin flip 

and with its flip. The corresponding probabilities of forward 

and backward scattering depend on the degrees of freedom 

mentioned above. The manipulation of the degrees of 

freedom leads to the variation of these scattering 

probabilities and, ultimately, to the variation of the transport 

characteristics of the system on the transmission coefficient 

of the electron wave and its degree of spin polarization. 

Thus, in papers [6], the scattering of an electron wave on a 

system consisting of two barriers with noncollinear internal 

fields was considered. Interesting features are revealed in 

the behavior of the transmission coefficient and the degree 

of polarization of the transmitted wave, which are functions 

of the same angular degree of freedom. Certain analogies 

with the behavior of optical systems were found in [6]. The 

scattering on a system of collinear barriers containing a 

single “non-coplanar defect” are considered [7] and it is 

shown that the presence of this “defect” significantly affects 

the behavior of transport quantities. Also it is assumed that 

the incident electron wave is not spin polarized. We are 

actually interested in the spin-polarizing properties of the 

systems under consideration. 
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2. STATEMENT OF THE PROBLEM 

Thus, we consider the scattering of a non-spin-polarized 

electron wave on a system consisting of three identical 

magnetic barriers arranged equidistant and separated by 

non-magnetic quantum wells. The three barriers are 

characterized by induction vectors of internal magnetic 

fields which are parallel to the planes of the layers.  This 

means that the magnetic layers possess an “easy-plane” 

anisotropy. Besides, we will assume that the magnetic layers 

are isotropic with respect to the rotations of the internal field 

vector both clockwise and counterclockwise. We also make  

 

 

the following assumption, which greatly simplifies the 

solution of the scattering problem: the magnetic field in the 

film plane can be considered homogeneous. 

From Fig. 1, it can be seen that the vectors 1B  and 2B  are 

obtained by rotating the vector B  around an axis parallel to 

y . In general, the vectors B , 1B , 2B , can be arbitrarily 

distributed across the nodes A, B, C. However, it is this 

configuration that will be discussed below. 

The heterostructure described above corresponds to the 

potential relief shown in Fig 2: 

 

 

 

 

3. TRANSFER MATRIX 

Electron interaction with the barrier occurs along the 

y –axis, that is the interaction potential depends only on the 

variable y . Therefore, the interaction Hamiltonian 

commutes with the operators of momentum components ˆ
xk

and ˆ
zk . This leads to the separation of variables in the 

Schrödinger equation. Thus, the scattering of the electron 

wave on a single barrier or a system of multiple barriers, has 

a one-dimensional nature. 

This fact makes it possible to apply the well-known 

transfer-matrix method to construct the amplitudes of 

transmission and reflection. For the scalar scattering 

problem, this method is described in [8]. In the case of spin-

dependent scattering, it is summarized in the papers [6,7]. 

In the case of spin-dependent scattering on a three-

barrier non-collinear system, the transfer- matrix is as 

follows: 

( )( ) 3

0 1 0 1 2 0 2
ˆ ˆ ˆ ˆS S U S U U S U A+ + −=  , 

 where 0S  describes the scattering on the first barrier, and 

( ) ( )0
ˆ ˆ 1,2U S U + =  – on  the second and third barriers 

respectively. 

The transfer matrix 
0S  is as follows: 

1 1 1
0 *

2 2 2

, 1 0 0
, ,

0 1 0,

t r t
S

t r t

 
 

 

     
= = =    

    
, 

,r t
 
– are partial amplitudes of reflection and transmission, 

i.e. amplitudes on the barrier with a "Zeeman-split-ceiling":

  

  

  

    

  

  

  
  

  

  

Fig.1 Diagram of a heterostructure containing three 

magnetic nanolayers. The axes  and  are located in the 

plane parallel to the planes of the layers, and  is 

perpendicular to these layers. The vectors of internal fields 

are equal in magnitude  and differ only in 

orientations. 

  

      

    
      

Fig.2 Potential relief of a heterostructure with three 

magnetic nanolayers. We assume the barriers are 

identical, that is, their geometry is the same, and the 

characteristic "dimensions" match up. 
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( ) ( )0 0, , ,r r V B E t t V B E = = , 

E – the transverse part of scattering energy; each of the Û  

matrix is a block-diagonal matrix, the blocks of which 

diagonalize the operator of electron interaction with the 

second and third barriers: 

 

Below we present in brief the results we obtained in the 

study of the transport characteristics of the three-barrier 

structure described above.

( )
cos , sin

0 2 2ˆ , , 1,2
0

sin , cos
2 2

U
U U

U

 

 

 
−  

= = =  
  
 
   

A  is a block-diagonal matrix of translation of the barrier 

on a distance a .   

4. DISCUSSION 

For numerical estimates and plotting of the 

transmission coefficient and the degree of spin polarization 

of the transmitted electron wave, we need to select a 

particular type of interaction Hamiltonian.  

We represent it as follows: 

( ) ( ) ( ) ( )

( ) ( )

int 1

2 2 ,

zH B y B y a

B y a

       

   

= − + − − +

+ − −
  

where as the finite interaction function, the Dirac delta 

function is chosen, which is different from zero at the nodes 

with coordinates 
00, ,2 ,y a a E a= = ,  – is the 

amplitude of  –potentials, 
02E = ,  – is the 

electron magnetic momentum, 
2 2

0 2E ma= – the 

energy value, which matches in order of magnitude with the 

energy of “zero oscillations ” of an electron in a region of 

width a . It is introduced in order to make intH  

dimensionless. The amplitudes of the  – potentials include 

vector quantity  –representing three Pauli matrices. 

 The above mentioned physical quantities (transport 

characteristics) are functions of three variables: the angular 

degrees of noncollinearity 1  and 2 , and the electron wave 

momentum. When building 3D graphs, one of these 

variables is fixed. 

Both physical quantities are periodic functions of 1  and 2

. The maximum values of these quantities are 

max max0.6, D 0.5P  = . These values are achieved at 

1k = . The oscillation amplitude of the transmission  

coefficient is small; it does not exceed 
210−

. 

 

 

Fig.3 The dependence of the degree of 

polarization of the transmitted wave on the 

angular degrees of freedom  and . 

 

  

  

  

Fig. 4 The dependence of the transmission 

coefficient on the degrees of freedom  and . 

 

  

  

  

TechConnect Briefs 2019 67



 
 

 

 

 

 

 

 

 

 

 

 

( )1,P k   is a non-monotonic function. With an increase in 

the momentum k  – the amplitude of oscillations in the 

variable 
1  – decreases. The dependence of ( )P k  depends 

essentially on the value of a fixed variable 
1 . 

 

 

 

 

 

 

 

 

 

 

It is clear from the graph that the oscillations in the angular 

variable 
1  are weak, and with the growth of k  they 

practically disappear. Non-monotonic behavior depending 

on the momentum k  - is due to the following reasons: the 

emergence of the maximum is due to the resonance of the 

transmission of the corresponding collinear system (partial 

resonance of transmission). Since noncollinearity leads to 

the two-channel scattering — without and with spin-flip, the 

transmission coefficient does not reach a maximum value 

equal to unity. In this case 
max 0.8P  . The same fact leads 

to an increase in the resonance width compared with the case 

of a collinear system. By virtue of the choice of the 

interaction potential in the form of  –function, there is no 

separation by scattering energies into sub-barrier and over-

barrier regions. That is why the oscillations in  momentum 

variable k  are absent. 

The manipulation of degrees 
1  and 

2   means the rotation 

of the vectors of the internal fields around the y - axis,  and 

besides two options  of rotation are possible: clockwise and 

counterclockwise. 

From Fig. 7, it can be seen that the difference in the degrees 

of polarization of the transmitted wave P  in certain 

ranges of variables k  and 1  
 significantly differs from 

zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Dependence of the degree of polarization 

of the transmitted wave on the variables  and  

, and at a fixed value of . 

 

  

  

  

   

  

  

Fig.6 The dependence of the transmission 

coefficient on the variables  and  at a 

fixed value . 

 

  

  

  

Fig.7 The dependence of 

 on variables  

and , at a fixed value  

 

  

  

  

Fig.8 The dependence of 

 on variables  

and , at a fixed value  
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From Fig.8 it can be seen that the difference 
zP  is 

practically zero. This means that when the rotation of the 

vector is conversed ( )1 1 1B  →−  , in the transmitted 

wave, in certain regions of the variables k  and
 1  there 

arise non-zero polarization components 
xP   and 

yP . 

5.  CONCLUSION 

The scattering of a non- spin- polarized electron wave on a 

three-barrier magnetic noncollinear system is considered. 

The behavior of the degree of spin polarization of the 

transmitted wave and the transmission coefficient as 

functions of the electron momentum and noncollinear 

degrees of freedom 
1  

and 
2  

are investigated. The 

asymmetry in these characteristics is shown when one of the 

vectors 
1 2,B B , rotates clockwise and counterclockwise. 

This asymmetry is clearly manifested in the behavior of the 

degree of polarization of the transmitted wave. 
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