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ABSTRACT 

 
We make a numerical analysis of breakdown 

characteristics of AlGaN/GaN HEMTs with a high-k 
passivation layer, where a deep acceptor above the midgap 
is considered in a buffer layer and its density NDA is varied 
between 1017 and 3x1017 cm-3. It is shown that, generally, 
the breakdown voltage Vbr becomes higher when the 
relative permittivity of the passivation layer r is higher. In 
the case where NDA is relatively low, Vbr is determined by 
impact ionization of carriers when r is low, but it becomes 
determined by buffer leakage current when r is high, and 
Vbr becomes saturated with increasing r. On the other hand, 
when NDA is relatively high, Vbr is determined by impact 
ionization of carriers even if r becomes 60, and it becomes 
about 500 V at the gate-to-drain distance of 1.5 m, which 
corresponds to an average electric field of over 3 MV/cm. 
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1 INTRODUCTION 
 
AlGaN/GaN HEMTs are now receiving great interest 

for application to high-power microwave devices and high 
power switching devices [1, 2]. To improve the power 
performance and the breakdown voltage of FETs, the 
introduction of field plate is shown to be effective [3-8], but 
it may increase the parasitic capacitance, leading to 
degrading the high-frequency performance. In a previous 
work [9, 10], as another method to improve the breakdown 
voltage of AlGaN/GaN HEMTs, we proposed a structure 
including a high-k passivation layer, and showed that the 
breakdown voltage increased significantly. We assumed an 
undoped semi-insulating buffer layer where a deep donor 
compensates a deep acceptor. Recently, Fe- and C-doped 
semi-insulating buffer layers are often adopted and they 
acts as deep acceptors [11-15]. Therefore, in this work, we 
analyze AlGaN/GaN HEMTs with a buffer layer including 
only a deep acceptor, and studied how the breakdown 
voltage is influenced by its density. 

 
2 PHYSICAL MODEL 

 
A device structure analyzed here is shown in Fig.1. The 

gate length and the gate-to- drain distance is 0.3 μm and 1.5 
μm, respectively. The passivation layer’s thickness is 0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Device structure analyzed in this study. 
 
 
 
μm. We vary the relative permittivity of the passivation 
layer εr as a parameter. Here, we adopt a Fe-doped semi-
insulating buffer layer, where the Fe-related level (EDA) is 
set to 0.5 eV below the bottom of conduction band [11, 15]. 
The Fe-related level is a deep acceptor. The deep acceptors 
act as electron traps. The deep-acceptor density NDA is 
varied between 1017 and 3x1017 cm-3. 

Basic equations to be solved are Poisson’s equation 
having the ionized deep-acceptor density term and electron 
and hole continuity equations which include a carrier loss 
rate via the deep acceptor and an impact ionization rate [10, 
16-18] and expressed as follows. 

1) Poisson’s equation 

                                                                                           (1) 
Di NDA )( ) (q p n N       

2) Continuity equations for electrons and holes 

                                                                                           (2)  DAnJ qG qR   

                                                                                           (3) 

where NDA
 is the ionized deep-acceptor density, and RDA 

represents a carrier recombination rate via the deep acceptor. 
G is a carrier generation rate by impact ionization, and 
given by 

                                                                                           (4) 

where n and p are ionization rates for electrons and holes, 
respectively, and expressed as 

DApJ qG qR  
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Figure 2: Calculated off-state (a) ID – VD curves and (b) IG – 
VD curves when NDA = 1017 cm-3. The dotted lines indicate 1 
mA/mm. 
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where E is the electric field. An, Bn, Ap, and Bp are deduced 
from [19]. 

The above basic equations are put into discrete forms 
and solved numerically. 
 

3 RESULTS AND DISCUSSIONS 
 
Figs.2 and 3 and shows calculated drain current (ID) – 

drain voltage (VD) curves and gate current (IG) -VD curves 
as a parameter of the relative permittivity of passivation 
layer r, where NDA is 1017 and 2x1017 cm-3, respectively. In 
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Figure 3: Calculated off-state (a) ID – VD curves and (b) IG – 
VD curves when NDA = 2x1017 cm-3. The dotted lines 
indicate 1 mA/mm. 
 
 
 
both cases, when r is low ( 10), a sudden increase in drain 
current due to impact ionization determines the breakdown 
voltage Vbr. Here the drain current becomes equal to the 
gate current. In the case of NDA = 1017 cm-3, when r 
becomes high (≥ 30), ID reach a critical value (1 mA/mm) 
before a sudden increase in ID. In this case the drain current 
is much higher than the gate current, and hence the buffer 
leakage current determines Vbr. Note that Vbr is defined here 
as the drain voltage when ID becomes 1 mA/mm. In Figs.2 
and 3, Vbr increases as r increases. This is because the 
electric field at the drain edge of the gate is reduced when r 
becomes high [13]. In the case of NDA = 2x1017 cm-3, even 
if r becomes high (≥ 30), ID increase suddenly due to 
impact ionization of carriers and ID is nearly equal to IG in 
this region. 
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Figure 4: Comparison of breakdown voltage Vbr versus εr 
curves among the three cases with different NDA. 
 
 

Fig.4 compares the breakdown voltage Vbr versus r 
curves among the three cases with different NDA. In the case 
of NDA = 2x1017 cm-3 and 3x1017 cm-3, Vbr becomes much 
higher than that for NDA = 1017 cm-3 when r becomes 
higher than 30. This is because the buffer leakage current is 
reduced for NDA = 2x1017 cm-3 and 3x1017 cm-3 and Vbr 
becomes determined by impact ionization of carriers. In the 
case of r is 60, Vbr reaches about 500 V, which 
corresponding to the average electric field of 3.3 MV/cm 
between the gate and the drain. 

Fig.5 shows electric field profiles at the heterojunction 
interface between the two cases with NDA = 1017 and 2x1017 
cm-3. Here, r is 40. The electric field profiles are similar 
between the two cases until VD = 327 V which is the 
breakdown voltage for NDA = 1017, and it is determined by 
the buffer leakage current. In the case of NDA = 2x1017 cm-3, 
the breakdown voltage is 450 V which is determined by 
impact ionization of carriers at the drain edge of the gate 
region. The electric field profiles are rather uniform in this 
case. It is concluded that the difference of buffer leakage 
current is essential to determine the difference of 
breakdown voltage here. 

 
4 CONCLUSION 

 
A two-dimensional numerical analysis of off-state 

breakdown characteristics in AlGaN/GaN HEMTs with a 
high-k passivation layer has been performed, where a deep 
acceptor above the midgap is considered in the buffer layer. 
Its density NDA is varied between 1017 and 3x1017 cm-3. It 
has been ascertained that the breakdown voltage Vbr 
becomes higher when the relative permittivity of the 
passivation layer r is higher. When NDA is 1017 cm-3, Vbr is 
determined by impact ionization of carriers when r is low, 
but it becomes determined by buffer leakage current when 
r is high. In this case, Vbr becomes almost saturated with r. 
On the other hand, when NDA= 2  3x1017 cm-3, the buffer 
leakage current is reduced and hence Vbr is determined by 
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Figure 5: Comparison of electric field profiles along the 
heterojunction interface. r = 40. (a) NDA = 1017 cm-3, (b) 
NDA = 2x1017 cm-3. 
 
 
 
impact ionization of carriers even if r becomes 60. In this 
case Vbr reaches about 500 V at the gate-to-drain distance of 
1.5 m, which corresponds to an average electric field of 
over 3 MV/cm. 
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