A Study of Cutting Temperatures in Turning Glass-Fiber-Reinforced -Plastic (GFRP) Composites with nose radius worn tools

Chung-Shin Chang

Dept. of Mechanical Engineering, National Ilan University, I-Lan, Taiwan, 260
cschang@niu.edu.tw

ABSTRACT

Nine kinds of chamfered main cutting edge carbide tools were used in turning of glass-fiber-reinforced plastics (GFRP) materials to study the temperature of tip's surface and the cutting forces. The friction forces and frictional heat generated on elementary cutting tools are calculated by using the measured cutting forces and the oblique cutting analysis. The heat partition factors between the tip and chip are solved by using the inverse heat transfer analysis, which utilizes temperature on the carbide tip’s surface measured by infrared as the input. The tip’s surface temperature of the carbide is solved by finite element analysis (FEA) and compared with those obtained from experimental measurements. A good agreement demonstrates the accuracy of the proposed model.

Keywords: FEA, GFRP, Nose radius and Temperature of GFRP

1 INTRODUCTION

Polymeric materials such as fiber reinforced plastics (FRP) have been widely used in various engineering structures. GFRP has been successfully used in the aerospace, transportation, recreational, appliance, electrical equipment, tank and piping industries [1]. The machining of glass fiber-epoxy composite materials is not the same as the machining of conventional metal materials. Singamneni [2] demonstrated the mixed finite and boundary element method (FEM) finally enables the estimation of the cutting temperatures which is a simple, efficient method, and at the same time it is quite easy to be implemented. The objective of this paper is to set up an oblique cutting GFRP model to study the cutting temperature for a nose radius worn tool with a chamfered main cutting edge.

2 THEORETICAL ANALYSES

For the case of chamfered main cutting edge,
\[A = A_1 + A_2 + A_3 + A_4 + A_5 \]
\[Q = Q_1 + Q_2 + Q_3 \]

Table 1: Tool geometries specifications

<table>
<thead>
<tr>
<th>Side cutting edge angle</th>
<th>tool no</th>
<th>Rake angle: (\alpha_{s1}, \alpha_{s2})</th>
<th>Nose radius worn tools (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_s = 20^\circ)</td>
<td>1</td>
<td>10°, -10°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 20^\circ)</td>
<td>2</td>
<td>20°, -20°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 20^\circ)</td>
<td>3</td>
<td>30°, -30°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 30^\circ)</td>
<td>4</td>
<td>10°, -10°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 30^\circ)</td>
<td>5</td>
<td>20°, -20°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 30^\circ)</td>
<td>6</td>
<td>30°, -30°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 40^\circ)</td>
<td>7</td>
<td>10°, -10°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 40^\circ)</td>
<td>8</td>
<td>20°, -20°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>(C_s = 40^\circ)</td>
<td>9</td>
<td>30°, -30°</td>
<td>0.1, 0.3, 0.5, 1.0</td>
</tr>
</tbody>
</table>

Fig. 3: Flow chart of heat calculate

2.1 Cutting Forces Calculation

Transformation equations used to obtain the normal (\(N_s \)) and shear forces (\(F_s \)) along the fiber direction in terms of the principal (\(F_c \)) and thrust components (\(F_t \)) are shown in Eqs. (4) and (5):

\[N_s = F_c \sin \theta + F_t \cos \theta \]
\[F_c = t_0 A_0 \frac{\cos(\beta - r)}{\sin \theta \cos(\theta + \beta - r)} \]
\[F_t = \tau_0 A_0 \frac{\cos(\beta - r)}{\sin \theta \cos(\theta + \beta - r)} \]
\[\tau_s = \tau_{composite} = \tau_{fiber} V_f \]
\[f_t = \tau \sin \beta / \cos(\phi + \beta - \alpha) \sin \phi \]

Where the area of unreformed chip is \(A_0 \), \(\beta \) is the mean friction angle, \(r \) is the rake angle. By knowing the shear area \(A_0 \) of the unreformed chip, the shear strength \(\tau_0 \) was calculated [3]. The shear energy per unit time (\(U_s \)) and the friction energy per unit time (\(U_f \)) were proposed as:

\[U_s = F_f V = \tau_0 A_0 \cos \alpha / (\cos(\phi - \alpha)) \]
\[F_s = F_c \cos \theta + F_t \sin \theta \]
\[V_s = V \cos \alpha / (\cos(\phi - \alpha)) \]

\[U_f = F_f V = f_t \int_0^h dV_c = \tau_0 \sin \beta V \cos \alpha Q \]

\[U_s = U_f = V (F_H)_{U_{min}} \]
\[F_H = (F_H)_{U_{min}} = U_{min} / V = \{\tau_0 \cos \alpha A / (\cos(\phi - \alpha)) + \tau_0 \sin \beta \cos \alpha Q / (\cos(\phi + \beta - \alpha) \cos(\phi - \alpha))\} \]
\[F_i = \tau_0 \sin \beta \cos \alpha Q / (\cos(\phi + \beta - \alpha)) \sin \phi \]

\[\sigma_y = H/B / \pi \]
\[\tau_y = \sigma_y / 2 \]

2.2 Solid Modeling of Carbide Tip

To develop a 3D FEM model for thermal analysis, the tip cross-section profile perpendicular to the cutting edge was measured using a microscope, Solid Works™, was used to generate the tip body by sweeping the PCMO along the main cutting edge, as shown in Fig. 2.

2.3 Finite Element Model

The Abaqus™ is used in this study. The finite element mesh of the carbide tip is shown in Fig. 2, which was modeled by 58,000 four-node hexahedral elements. As shown in the top view of Fig. 4, 8*6 nodes are located on the projected contact length between the tool and the workpiece, 3 * 6 nodes are...
located on the chamfered width of the main cutting edge, and 1*6 nodes are placed on flank wear.

2.4 Modified Carbide Tip Temperature Model

Magnitude of the tip’s load is shown in the following Eqs. (19) and (20)

\[K = \frac{U_f}{A'} \] (19), \[A' = L_p(d + W_e + V_b) \] (20)

Where the area of friction force action is \(A' \), \(U_f \) is the friction energy, \(L_f \) is the contact length between the cutting edge and the workpiece, \(L_p \) is the projected contact length between the tool and the workpiece, as referred to in Fig. 5

\[\rho C \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} + k \frac{\partial^2 T}{\partial z^2} \] (21)

\[q_{tool} = Kq_f \] Li and Shih [4] (22)

Finite element modeled temperature at specific infrared locations, as shown in Fig. 6(b) on the tip face. The estimated temperature at the same infrared location and time, \(T_{ij}^{exp} \), determines the value of the objective function.

\[Obj(K) = \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} (T_{ij}^{exp} - T_{ij}^{est})^2 \] [4] (23)

3 EXPERIMENTAL PROCEDURES

Experimental set up is shown in Fig 6. Table 2 shows some of the physical and mechanical properties of GFRP [5]. The cutting tools used in the experiments are Sandvik H1P (K type) [6]. Tool composition: WC 85.5%, TiC 7.5%, Ta (Nb)C 1% and Co 6 %, \(HV = 1740 \), density=10.3 g/cm\(^3\), thermal conductivity=23 W/m-\(^o\)K and heat capacity= 200 (J/Kg-\(^o\)K). The tool geometries showed in Table 1.

4 RESULTS AND DISCUSSION

4.1 The Cutting Forces

Chang demonstrated in turning of GFRP with chamfered main cutting edge nose radius tools, the resultant cutting force, \(Fr \), is about 15% less than that for unchamfered main cutting edge tools [7].

4.2 Temperature of Surface of Tip

Based on Li and Albert [4], according to Eqs. (20) to (21), the flowchart for inverse heat transfer solution of \(K \) is described in Fig. 3. After finding the value of \(K \), the finite element model can be applied to calculate temperature at tips, the results are shown in Fig. 7.

5 CONCLUSIONS
The test investigated the cutting forces and cutting temperature during the turning of GFRP. Chamfered main cutting edge nose radius worn tools with C_S equals to 20°, $\alpha_{s1}(\alpha_{s2}) = -10^\circ \times 10^3$ and nose radius $R=0.3$ mm, produce the lower cutting forces and lower cutting temperature. The FEM and Inverse heat transfer solution in tool temperature in CFRP turning is obtained and compared with experimental measurements. The good agreement demonstrates the accuracy of proposed model.

REFERENCES

Table 2 Properties of the work materials GFRP [5]

<table>
<thead>
<tr>
<th>Nominal form</th>
<th>Density gm/cm^3</th>
<th>Thermal Conductivity $kCal/hr ^\circ C$</th>
<th>Fiber Content</th>
<th>Coefficient of Thermal Expansion ($10^6/^\circ C$)</th>
<th>Hardness (Shore, Hs)</th>
<th>Tensile Strength (kg/mm2)</th>
<th>Compressive Strength (kg/mm2)</th>
<th>Modulus Tensile (kg/mm2)</th>
<th>Shear Strength (kg/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roving</td>
<td>1.8−2.1</td>
<td>0.21−0.28</td>
<td>75%</td>
<td>2−9</td>
<td>vinyl-ester</td>
<td>55−60</td>
<td>45−65</td>
<td>45−60</td>
<td>2000−4000</td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 7 Temperature distribution with chamfered cutting edge inserts (a) heat flux (b) near the tool nose at $C_S = 20^\circ$, $\alpha_{s1}(\alpha_{s2}) = -10^\circ \times 10^3$, $d=2.5$mm, $f=0.33$mm/rev, and $V=120$ m/min (GFRP)