Mobility Enhancement from Process-Induced Stress of T-FinFET and Compact Model Development

Wanjun Wang, Jin He*, Bing Xie, Guangjin Ma, and Guoqing Hu
Peking University Shenzhen SoC Key Laboratory, PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China
*frankhe@pku.edu.cn

ABSTRACT

Process-induced stress is often used in advanced CMOS process platform to increase carrier mobility so as to improve MOSFET performance. It also strongly affects the carrier mobility of T-FinFET as long as it is fabricated with the CMOS process as always done in experiment tunneling FET device. Here we report the effect of process-induced stress on mobility enhancement and a corresponding compact model. The layout dependence of T-FinFET’s carrier mobility due to process-induced stress is efficiently captured. The mobility model is verified for different layout dimensions for several stress-inducing process technologies through both process simulations and experimental data.

Keywords: nanometer T-FinFET, process technology, strain effect, performance enhancement, modeling

1 INTRODUCTION

The continued scaling of bulk MOSFETs for higher current drive is approaching the physical limit due to strong short-channel effect, low threshold voltage controllability and high leakage. Thus new process technology, new devices are being investigated to extend the Moore’s Law.

Among the new process technology, the process-induced stress is promising in enhancing the carrier transport and achieving higher current drives. Last few years have seen numerous efforts on introducing both biaxial and uniaxial stress in transistor to enhance the electron and hole mobility [1,2]. However, there has been very little work to date on modeling layout dependent mobility enhancement due to process-induced stress. In addition, the efforts were focused mainly on the modeling of mobility change due to STI process [3]. On the other hand, among the proposed non-classical device structures, the double-gate MOSFET and FinFET, with very thin film body are strong contenders to the bulk MOSFETs due to superior short-channel-effect immunity, near-ideal sub-threshold slope, and low parasitic resistance and capacitance [4-6]. Following the ITRS prediction, the CMOS integrated circuit will approach 10 nm technology generation in two or three years[7], and Tunneling-FinFET (T-FinFET) structure is highly required for the IC production scaling from 10 nm down to 5 nm. It is well known that the combination of the strain effect and T-FinFET structure results in high performance match between N-type and P-type devices. Also, the traditional modeling approach is generally believed to be outdated due to the regional characteristics, a compact modeling for stress effect on T-FinFET mobility enhancement is highly required by engineers and circuit designers to optimize process control and device structure parameters.

In this paper, a mobility enhancement model for process-induced stress is developed for the T-FinFET. The model is non-process specific and can work for any stress-inducing process. Process simulations in this work are performed on T-FinFET using the process simulator TAURUS to develop the mobility model. The new model is then incorporated into the ULTRAS-T-FinFET mobility model. The model is finally verified with experimental data from various stress-inducing process technologies.

2 CHANNEL STRESS ANALYSIS

It is well know that stress in silicon leads to band splitting and change of effective mass, resulting in mobility change. The fractional change in the local resistivity is linearly related to the local stress through the Piezoresistive Coefficients.

\[\frac{\Delta \rho}{\rho} \propto S \quad \text{where } S \text{ is local stress} \quad (1) \]

Figure 1. Sources for process-induced stress in T-FinFET

Figure 1 highlights the possible ways through which stress can be introduced into the channel in a regular T-FinFET process. Depending on the materials and the process conditions, the resulting stress in channel can be either compressive or tensile. In almost all these methods, the stress in the channel is non-uniform and varies along the channel length. Using Eq. 1, the change in channel mobility, taking into account the non-uniformity of stress in the...
channel, can be written as (L represents the set of layout variables)

$$\frac{\Delta \mu}{\mu} \propto -\frac{\int_0^L S(x,L) \, dx}{L} = S_{AVG}(L)$$

(2)

Eq. 2 shows that the mobility enhancement is proportional to the average stress in the channel. The stress in the channel is a function of several layout variables like the channel length (L), source/drain length (L_{SD}). To model the mobility change for any stress-inducing process, it is thus imperative to evaluate the layout dependent average channel stress (S_{AVG}) resulting from that process.

Stress transfer to the channel from any arbitrary process can be decomposed into four distinct components based on the stress transfer direction as shown in Figure 2.

The four possible directions through which the stress can be transferred to the channel are S/D side, Gate-stack side, Spacer side of T-FinFET. Channel middle part stress (ex. SiGe buffer) is mostly uniform through the channel and independent of the transistor layout. Hence, it can be modeled simply via a constant. The other three directions need to be modeled individually. The total channel stress will be the sum of these four components.

2.1 S/D side Stress

S/D side stress refers to the stress transferred from S/D region (Figure 2). The stressor can be on top of S/D (ex. Capping layer), inside the S/D (ex. SiGe S/D), or adjacent to S/D region (ex. STI). To analyze this component, a 75nm thick stressed nitride layer, with an internal stress of 1800MPa, is deposited on the S/D area (Figure 3a) for different transistor lengths (L), only showing the upper half part of the T-FinFET. A tensile nitride layer transfers tensile stress to the channel. As L increases, the stressor moves away from center of channel, which decreases the average stress S_{AVG}.

The channel length dependence of S_{AVG} for S/D side stress can be semi-empirically modeled through (Figure 3b)

$$S_{AVG}(L) = A1 + \frac{A2}{A3 + L}$$

(3)

Where A1 denotes the long channel stress, while A2 and A3 control the increase rate of stress as L decreases. To verify the S/D side stress model, SiGe S/D structure was simulated. 17% Ge was used in the S/D region. Compressive stress gets transferred to the channel.

The L dependence of S_{AVG} for SiGe S/D can also be captured using Eq. 3 (Figure 3c). The stressor in this case is inside the S/D region, unlike in Figure 3a where it was on the top, indicating that Eq. 3 works for all S/D side stressors.

2.2 Gate-stack Side stress

Stress can also get transferred from gate-stack into channel (Figure 2). The stressor can be a layer on top of gate electrode (ex. Capping layer), the gate electrode itself, or the gate-stack. In order to study this stress transfer component, a gate electrode comprising of a stressed layer (SL) and an unstressed Poly-Si is used. Figure 4a shows a simulated structure with 150nm SL (with intrinsic stress of 1800 MPa) and 30nm unstressed Poly-Si. Process simulations were repeated with different SL thickness. The results showed that the stressor has to be very close to channel to generate significant S_{AVG} (Figure 4b). The channel length dependence of Gate-stack side stress is captured through (Figure 4b)

$$S_{AVG}(L) = B1 + \frac{B2}{B3 + L} - \frac{B4}{B5 + L}$$

(4)
The non-monotonic behavior for Gate-stack side stress can be explained as follows. The volume of stressor is proportional to gate length. For very short L, stressor volume is small, making S_{AVG} small. As L increases, the increasing stressor volume enhances the channel stress. At longer L, the stress in the center of gate is relaxed. The maximum S_{AVG} is observed at an intermediate L where the relaxation effect begins to dominate the stressor volume increase. S_{AVG} increases rapidly as channel length decreases. Hence, a combination of S/D side and Gate-stack side stress can provide stress (mobility) enhancements over a wider range of channel lengths.

2.3 Spacer Side stress

A stressed sidewall spacer or any stressed film outlining the spacer can transfer stress to channel from spacer side (Figure 2). Maximum stress transfer occurs when the spacer itself is stressed. Simulations showed that 2GPa stressed spacer transfers only 80MPa stress (Figure 5).

Any stressed film outlining the spacer will transfer even smaller stress to the channel, since it is further away from channel. This implies that this stress transfer component is negligible and can be excluded from the model.

3 SOURCE/DRAIN LENGTH DEPENDENT MODEL

In the previous section, stress dependence on the layout variable channel length (L) was studied. Using a similar approach, a model for Source/Drain length (L_{SD}) dependence is now developed. L_{SD} controls the length of S/D side stressor or/and the distance of S/D side stressor from the center of channel. Thus, the S/D side stress changes significantly with L_{SD}. Other stress transfer components remain unchanged with L_{SD} variation.

S/D side stress is sufficient to capture L_{SD} dependence. Nitride stressor is deposited (same as in Figure 3a) over a variable L_{SD}. As L_{SD} increases, S_{AVG} increases and gradually saturates when the farther edge of stressor has no more impact on channel stress. L_{SD} dependence can be captured by (Figure 6)

$$S_{AVG}(L_{SD}) = C_1 \frac{C_2}{C_3 + L_{SD}}$$

4 MOBILITY ENHANCEMENT MODEL AND VERIFICATION

From the stress analysis, S/D side stress and Gate-stack side stress are needed to capture channel length dependence while only S/D side stress is needed to capture L_{SD} dependence. Using Eq. 1-5, we can express the holistic mobility enhancement model for any stress-inducing process as

$$\mu = \mu_0 \left[1 + A_1 + \frac{A_2}{A_3 + L} + \frac{A_4}{A_5 + L} \right] \left[1 + B_1 + \frac{B_2}{B_3 + L_{SD}} \right]$$

where μ_0 represents any mobility model with no stress, A_1-A_5 model L dependence and B_1-B_3 model the L_{SD} dependence. Substrate side stress can be modeled by A_1, a constant correction term. A_1-A_3 can model S/D side stress. A_1-A_5 can represent either Gate-stack side stress or a combination of Gate-stack and S/D side stresses. All the parameters can be extracted by measuring the mobility...
enhancement as a function of channel length and S/D length. The proposed model was added to BSIM mobility model to enable further verification.

The complete model is verified against the capping layer process since it has all three layout-dependent stress components. The model (Eq. 6) agrees well with the capping layer process simulations for both \(L \) and \(L_{SD} \) variation (Figure 7a). Experimental data for capping layer process is obtained from [1], which reports mobility reduction for PMOS devices with a tensile capping layer. BSIM mobility model is first matched to the control wafer. The holistic mobility model (Eq. 6) was then added to BSIM model to capture the mobility change due to capping layer. Good fit was obtained to the measured mobility with capping layer using the holistic mobility model (Figure 7b).

Figure 7a. Capping layer process simulation and holistic model fitting in the T-FinFET.

Figure 7b. The model fitting to the transistor mobility with capping layer in the T-FinFET.

SiGe S/D process is very promising for PMOS mobility enhancement. Unlike the capping layer process, the stressor here is inside S/D region. Gain in the linear drain current was reported in [2] after correcting for \(V_g - V_t \). The holistic model is able to match the measured gain in linear ID for different channel lengths (Figure 8) through change of hole mobility.

Figure 8. Mobility change due to stress enables to fit the gain in linear drain current \(ID_{lin} \) in the T-FinFET.

5 CONCLUSION

The mobility enhancement through process-induced stress is studied and a compact model is developed and then verified for the T-FinFET. The developed model lends itself to an easy incorporation into any compact model through a simple modification of the mobility term. Channel length and Source/Drain length dependencies have been modeled. The approach used in this work can be extended to add other layout variables when need arises. The model has been verified against both process simulations and experimental data for a wide range of stress-inducing processes like Capping layer process, SiGe S/D process and STI process.

ACKNOWLEDGEMENT

This work is funded by National Natural Science Foundation of China under Grants (61574005) and Fundamental Research Project of Shenzhen Sci. & Tech. Fund (JCYJ20160329161334453).

REFERENCES

