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ABSTRACT 

A material geometry has been identified that 

achieves the theoretical upper bound for stiffness and strain 

energy storage. Extreme lightweighting and systems with 

unprecedented performance can be achieved with accessible 

fabrication methods and materials. The symmetries and 

alignments of material in this design form a relatively simple 

geometry that is amenable to fabrication using a variety of 

techniques. Unique and highly anisotropic subgeometries 

facilitate functional gradation, simple parameterized 

optimization, and even smart structures. 
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1   INTRODUCTION 

High-density materials that possess high specific 

stiffness and strength—such as boron carbide, beryllium, and 

carbon fiber composites—are essential in the design of high-

performance engineered systems. These advanced materials 

are key enabling technologies in modern space, air and naval 

vehicles, sports equipment, and fuel-efficient transportation, 

to name but a few examples. They provide structural shape 

stability and high strength with minimum mass penalty. As 

solid materials, however, they occupy only a portion of the 

available specific-stiffness and specific-strength materials 

design space. There is a large region of high specific stiffness 

and strength materials that can only be occupied by 

mechanical metamaterials1. Mechanical metamaterials can 

achieve extraordinary properties via combinations of 

constituent and geometric mechanical properties. Some 

examples of these materials include composite honeycomb 

sandwich panels and ceramic microlattices2,3. At its core, this 

approach utilizes design at an intermediate length scale—

between the small scale of the constituent’s microstructure, 

and the large scale of parts and loads—as is often found in 

natural systems such as bone and wood. The population of 

this property space is fundamentally a design problem, with 

previously known solutions falling far short of theoretical 

limits.  

Recent developments of key technologies in the 

early 21st century have facilitated a revolution in materials 

development, and the growing commercial relevance of 

mechanical metamaterials. Modern automated fabrication 

techniques—including the wide variety of 3D printing 

processes available and in development—allow for 

historically unprecedented part complexity, with little to no 

associated cost. These designs can be fabricated using 

industry relevant materials, such as aluminum and titanium 

alloys, ceramics, and even polymer matrix carbon fiber 

composites. This is cotemporaneous with the decline in the 

cost of computing resources to the point where the problem 

size, which can be large with problems of this type, is now 

tractable on a lab scale, allowing researchers to explore this 

design space1,4,5.  

In an effort to expand the property space of high 

specific stiffness materials, we have identified the first and 

only known material geometry to achieve the theoretical 

upper bounds for isotropic stiffness and strain energy 

storage1. This geometry stores strain energy more uniformly, 

independent of loading direction, than any other known 

geometry. The symmetries and alignments of material, and 

its unique subgeometries (Fig. 1), likely make it, and its 

properties, unique in three-dimensional space. The relatively 

simple geometry is amenable to origami-like sheet folding6, 

providing access to a wide range of constituent materials. In 

this review, we will explore the design space and capabilities 

of this unique material architecture.  

 

Figure 1: Unit cells of the cubic foam (a), octet foam (b), 

and the combined cubic+octet foam (c). The unique 

subgeometries (a & b) possess unique symmetries and 

associated mechanical properties. [Adapted from Berger, 

2017] 

2   METHODS 

2.1 Theoretical upper bounds 

The upper limit on the modulus of mechanical 

metamaterials is governed by a suite of theoretical bounds 

that limit the strain energy density7; for a detailed derivation 

of the bounds see Hashin (1963) [Ref. 7]. These bounds 

govern, in part, the Young’s, shear, and bulk moduli of 

isotropic cellular materials. They can be simplified to a 

single value 

𝛺 =
�̅�+2�̅�(1−�̅�)

𝐸𝐻𝑆𝑈+2𝐺𝐻𝑆𝑈(1−𝜈𝐻𝑆𝑈)
, (1) 

which uses the Zener anisotropy to quantify the overall 

performance1, where E, G, and ν are the Young’s and shear 

moduli, and the Poisson ratio respectively, the bar notation 

is used to denote the property of the metamaterial, and the 

subscript HSU to denote the respective Hashin-Shtrikman 

upper bound. 
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2.2   Finite element homogenization 

The effective moduli of material geometries are 

calculated using a finite element homogenization technique. 

Unit cells are subject to periodic boundary conditions 

consistent with uniform macroscopic strains—behaving as if 

part of a larger body undergoing deformation. To assess the 

efficiency of designs, distributions of strain energy are used 

to identify the geometric features responsible for high-

stiffness performance. Local strain energy densities are 

normalized by the average solid fraction strain energy 

density. Calculated moduli are normalized by the properties 

of a density of equivalent continuum, in which stresses and 

strains are uniform. 

2.3 Fabrication and mechanical testing 

Mechanical tests have been performed on 3D 

printed ABS plastic specimens6. Four single unit cell 

specimens were tested to failure using a MTS servohydraulic 

press and the resulting load displacement curves recorded. 

3 RESULTS AND DISCUSSION 

A combination of experimental, computer, and 

analytical models are all found to agree, and show that the 

cubic+octet material geometry is capable of achieving the 

theoretical upper bound for isotropic stiffness and strain 

energy storage, over a wide range of relative densities1. 

3.1 Specific stiffness and property space 

A majority of the upper region of high specific 

stiffness materials property space can only be populated by 

mechanical metamaterials (Fig. 2). When the cubic+octet 

geometry is composed limiting materials, it bounds the upper 

limits of property space. Available engineering materials can 

be used to produce structures with unparalleled performance. 

When compared to an optimal truss geometry1,8, 

strain energy distributions in the closed cell geometry are far 

 

Figure 3: Normalized strain energy distributions in two 

material geometries that achieve theoretical upper bounds 

for isotropic stiffness. Closed cell material geometries 

fundamentally outperform open cell geometries, evident in 

the relatively homogeneous strain energy distributions (a-

c). [Reprinted from Berger, 2017] 

 

Figure 2: Property space of isotropic and nearly isotropic materials. Materials with the highest specific stiffness lie towards the 

upper left quadrant. Mechanical metamaterials achieve properties that exceed that of natural and more conventional materials 

through combinations of high-performance constituents and design (the properties of non-optimal material geometries are not 

shown). The single crystal diamond system bounds the property space. [Adapted from Berger, 2017] 
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more homogeneous (Fig. 3). Lattices have historically been 

investigated for their lightweight and high specific stiffness 

and strengths9, yet underperform closed cell geometries by a 

large margin in terms of total structural efficiency (Fig. 4). 

3.2 Strength 

Experiments performed on 3D printed ABS 

indicate very high strengths in the cubic+octet geometry 

(Fig. 5), where roughly 75% of the material has yielded at 

peak load in structures with only ~25% relative density6.  

The geometry is insensitive to edge effects and 

imperfections. Finite element models of single unit cells 

perform only slightly worse, in terms of stiffness and 

strength, than periodic structures. Eigenmode imperfections, 

whose magnitude is on the order of the wall thickness, reduce 

performance only slightly. 

3.3 Functional Gradation 

The unique subgeometries of the cubic+octet foam 

allow for simple parameterized functional gradation and the 

creation of smart structures. Cubic and octet wall thicknesses 

can be varied independently to modify Young’s and shear 

modulus locally (Fig. 6). Large optimized structures can be 

devised with only a small number of parameters. 

3.3 Fabrication by sheet folding 

The cubic+octet geometry is composed of 

continuous sheets of material than can be assembled by 

origami like sheet folding6. A pattern can be cut and folded 

from a sheet of material (Fig. 7) to form a half unit cell (Fig. 

8) which can be bonded and assembled to form structures 

(Fig. 9) of arbitrary size and periodicity. Using this method 

structures with extremely low relative density can be made. 

4. CONCLUSIONS 

A geometry has been identified that achieves the 

theoretical bounds for stiffness performance, over a wide 

 

Figure 4: The toal stiffness (Eqn. 1) of closed cell 

geometries can approach the theoretical limit at low 

densities, outperforming optimal lattice geometries by 

nearly a factor of three. The anisotropic subgeometries  of 

the cubic+octet foam also have essentially maximal 

structural efficiency. [Reprinted from Berger, 2017] 

 

Figure 5: Experimental stress strain curves for 3D printed 

ABS plastic specimens and corresponding finite element 

predictions. Stress is normalized by the yield stress and 

relative density, strain is normalized by the yield strain of 

the constituent. Despite unpredicted delamination failurs, 

the performance is well predicted, with strengths that 

achieve more than 75% of the loosest theoretical upper 

bound. Significant imperfections have little effect on peak 

strength. [Adapted from Berger, 2015] 

 

Figure 6: Example of a functionally graded structure. 

[Adapted from Berger, 2015]. 
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range of relative densities. This closed cell geometry 

outperforms optimal lattice designs by nearly a factor of 

three. The design lends itself to optimization, functional 

gradation, and can be manufactured with origami like sheet 

folding to produce very low-density structures. Experiments 

indicate very high strengths and defect insensitivity. With 

such extraordinary properties, flexibility, robustness, and 

with the continued development of automated assembly 

techniques, there is a vast potential to produce systems with 

unprecedented performance for a wide range of applications. 

 

Figure 9: An assembly of interlocking unit cells, each 

composed of folded sheets of material. [Reprinted from 

Berger, 2015] 
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Figure 7: Two-dimensional pattern than can be cut and 

folded to form a half unit cell of the cubic+octet geometry, 

in an example of fabrication by sheet folding. Each pattern 

cooresponds to a single regular tetrahedron in the folded 

half unit cell. [Adapted from Berger, 2015] 

 

Figure 8: Two half unit cells can be bonded together and 

then interlocked with neighboring unit cells to form a 

structure of many unit cells. [Reprinted from Berger, 2015] 
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