
Optical Transition Rates in a Cylindrical Quantum Wire with an Inverse 

Parabolic Potential  

M.Tshipa 

 

Department of Physics, University of Botswana, Private Bag 0022, Gaborone, Botswana, 

tshipam@mopipi.ub.bw  
 

ABSTRACT 
 

Transition rates due to electron interaction with 

circularly polarized radiation in a solid cylindrical nanowire 

are presented, within the effective mass framework. In 

particular, the effect of the inverse parabolic potential 

(superimposed on an infinite cylindrical square well) on 

transition rates is investigated. As the strength of the 

potential is swept, transition rates are typified by 

undulations which stem from the effect of this potential on 

the wave functions of initial and final states. The potential 

has the predisposition to reduce transition energies between 

adjacent states, as such, intensification of the inverse 

parabolic potential naturally redshifts peaks of transitions 

rates.  

Keywords: Transition rates, confining potentials, cylindrical 

nanowire 

 

1 INTRODUCTION 
 

Recent advances made in nanotechnology have been 

rapid, furnishing the scientific community with tools with 

which to churn out nanostructures of different sizes and 

geometries [1-3]. These quantum structures can be 

employed to realize a plethora of devices which utilize 

different properties of the quantum structures to perform 

various functions. Some are utilized in biochemical sensing 

[5, 6], medicine [4, 7], energy generation [8] and 

optoelectronics [9], among other applications.  

 The speeds of operation and efficiencies of photonic 

devices depend on transition rates of the constituent 

quantum structures; therefore it is imperative to study 

transition rates in order to better understand how to 

optimize these devices. Hence, literature is awash with 

research on transition rates. Xu et al studied transition rates 

for two dimensional quantum cascade lasers [10].  

Transition rates were also probed in silicon nanostructures 

from photoluminescence measurements [11] and in 

hexagonal shaped nano wires [12].  

In this report, electron transition rates due to interaction 

with circularly polarized radiation in a solid cylindrical 

nanowire are presented, within the effective mass 

framework. The confining potential configuration 

considered here is the inverse parabolic potential 

superimposed on an infinite cylindrical square well.  

 

2 THEORETICAL FRAMEWORK 
 

2.1 Transition rates 

The transition rates from an initial state i  with energy iE

to a final state f  with energy fE  is given by the Fermi 

Golden rule  
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where intH describes the electron-photon interaction given 

by 
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with 0A  being the vector potential amplitude, q


 the photon 

field wave vector and r


 the electron position vector. c.c is 

the complex conjugate and ̂  is the polarization of the 

radiation. This gives 
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The exponential in the second expression has been 

expanded as a power series 
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, retaining the dominant 

lowest order terms, while the last expression above has 

been obtained by utilizing the identity 
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which springs from the Heisenberg equations of motion for 

operators. For circularly polarized light

  sincosˆ  r


, where the + (-) is for right (left) 

circular polarization. Taking the electron wave function as 

     imzik
mlml eeCz z,, , the transition rates are 

found to be 
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where 1M  is the Kronecker delta and 'mmM  , 

with the primes signifying the final state azimuthal 

quantum number. This implies that the Kronecker delta 

associated with emission is 1M  and that associated with 

absorption is 1M . The interaction integral is given by 
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where the primes still denote  the quantities of the final 

state. The amplitude of the vector potential Ao can be 

written as  
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  where qN  is the number of 

photons in volume V of the wire of dielectric constant m  

and 0  is the permittivity of free space. Using 

if EE  , the absorption transition rate can be 

expressible as 
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and the emmission transition rate as 
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where  
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2.2 The wave function 

The system considered is one of a cylindrical nanowire 

of radius R and height LZ. The nanowire may be a 

cylindrical GaAs material in a host of Ga1−xAlxAs. For this 

set up, the Schrödinger equation has the form 

 

       


,,,,,,2

2

2
zTEzVz 


, (7) 

 

where is the del operator,   the effective electron mass, 

 is the reduced Planck‟s constant and ET is the total energy 

of the electron. The electron wave function is sought in the 

form      imzik
ml eeCz z,, , where mlC  is the 

normalization constant, kz is the axial wave number of the 

electron while m (m = 0, ±1, ±2,...) is the azimuthal 

quantum number that indicates the angular momentum of 

an electron.  
 
is the radial component of the electron 

wave function which satisfies the Schrödinger equation  
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with mlE  being the radial confinement energy of the 

electron and l is the radial quantum number. The electric 

potential outside the nanowire is considered to be infinitely 

high for the electron, while inside the wire has an inverse 

parabolic potential. The inverse parabolic potential is 

maximum at the axis of the nanowire and decreases 

inversely with the square of the radial distance to attain a 

minimum at the walls (here taken as zero), represented 

mathematically as  
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After inserting this potential in equation (8), then the 

solution to the Schrödinger equation is in terms of the 

Bessel J function [13] (the Bessel Y being discarded due to 

its divergent nature at the origin)  
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Applying the boundary conditions at the wall of the 

cylinder ( R ) avails the electron energy spectrum as  
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where omlj  are the zeroes of the Bessel J function.  

 

3 RESULTS AND DISCUSSIONS 
 

The value of the electron effective mass used in these 

computations is e0.067m , where em  is the electron 

free mass, pertaining to GaAs crystals.  

 

The radial position expectation values of the lower m 

valued states are closer to the wire axis (where the potential 

is higher) than those of higher states, resulting in the lower 

m valued states being the most susceptible to the inverse 

parabolic potential. As such, as this potential increases the 

eigen energies of lower m valued states more than those of 

the higher m valued states as it intensifies. This imbues the 

inverse parabolic potential with the proclivity to dwindle 

transition energies between adjacent states as it gets 

stronger. Consequently, intensification of the inverse 

parabolic potential naturally redshifts peaks of transitions 

rates, regardless of the value of the radial quantum number l 

(Fig. 1).  

The nature of the inverse parabolic potential is such that 

it „expels‟ electrons away from the axis of the wire, towards 

the walls. This is signified by the shifting of peaks of 

electron wave functions away from the wire axis. This 

shifting is accompanied by modulation in amplitudes of the 

radial component of the wave function at different 

antinodes. These modulations percolate through to the 

interaction integral, which is characterized by undulations 

as the potential strength is swept [13]. The transition rates 

are not immune to this permeation of undulations which are 

evident in Figs. 2-4. As the radial quantum number 

increases, the undulations also increase in number.  

 

 Figure 1: Transition rates as functions of the photon 

energy for a transition from the ground state to the first 

excited state. The solid plots are for meV00   while the 

circles are for meV50  . 

 

Figure 2: The variation of transition rates (from ground 

state to first excited state) with strength of the inverse 

parabolic potential for radial quantum number l = 0, 1, and 

2.   
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Figure 3: Variation of transition rates as functions of 

strength of the inverse parabolic potential for the 

10  mm  transition for the indicated radial quantum 

number l values.  

 

Figure 4: The dependence of the rates of transition on the 

radius of the quantum wire for given beam energy. The 

transition is from the ground state to the first excited state. 

Transition energies scale inversely with the radius of the 

nanowire. Thus, increasing the radius redshifts peaks of the 

transition rates. Correspondingly, as the beam energy is 

increased, the radii of resonance shift to smaller value. 

Moreover, transition rates corresponding to small radii 

(corresponding to higher energy of excitation) are weightier 

than those corresponding to larger nanowires.  For an 

infinite cylindrical square well ( meV00  ), in order to 

alter the transition energies in the absence of the magnetic 

field, one has to vary the radius of the wire; reducing the 

radius of the wire increases the transition energies, and vice 

versa.  In essence, the nature of the potential offers 

nanotechnology an opportunity to vary beam energy of 

excitation without necessarily having to alter the radii of the 

nanowire, in cases where the dimensions are to have 

specific values.  

4 CONCLUSIONS 
 

The dependence of transition rates on the strength of the 

inverse parabolic potential has been studied. The transition 

rates a typified by undulations which increase as the radial 

quantum number increases. The nature of the potential is 

such that it decreases the energy gap between adjacent 

states, thus increase in the strength of this potential 

redshifts peaks of transition rates. This offers another 

avenue of tuning nanowires apart from varying the size of 

the nanostructures.  
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