Nanodelivery of Cerebrosyin in combination with neprilysin induces neuroprotection in Alzheimer's Disease pathology following brain injury

Hari Shanker Sharma1,3,4, Dafin F Muresanu2,3, José Vicente Lafuente4, Ranjana Patnaik5, Z Ryan Tian6, Asya Ozikzilcik6, Herbert Mössler3,7, Aruna Sharma1,3,4

1Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
Email: Sharma@surgsci.uu.se; Aruna.Sharma@surgsci.uu.se
2Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
3“RoNeuro” Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania
4University of Basque Country, Dept of Neurosciences, Bilbao, Spain
5School of Biomedical Engineering, Dept. of Biomaterials, Indian Institute of technology, Banaras Hindu University, Varanasi, India
6Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
7Ever NeuroPharma, Oberburgau, Austria

ABSTRACT

Our military personnel are often victims of traumatic brain injury (TBI) for which no suitable therapeutic measures are available till now. Since neprilysin (NPL) and endogenous enzyme is known to downregulate in TBI and also in Alzheimer's disease (AD), in this innovation we found that nanodelivery of Cerebrolysin using TiO2-nanowired biotechnology together with NPL markedly attenuated brain pathology following TBI. Interestingly, when AD like symptoms were induced by intracerebroventricular (i.c.v.) administration of amyloid beta peptide (AβP 1-40, 250 ng/10 µl) following TBI for 4 weeks exacerbation of brain pathology occurs. In this situation, co-administration of TiO2 nanowired NPL (1 µg in 10 µl) and Cerebrolysin (25 µl) significantly reduced brain pathology and achieved remarkable neuroprotection. These observations are the first to demonstrate that nanodelivery of cerebrolysin together with NPL is capable to induce AD pathology exacerbated by TBI, not reported earlier.

Keywords: Alzheimer’s Disease, brain pathology, traumatic brain injury, Neprilysin, Cerebrolysin, nanodelivery

1 INTRODUCTION

Neprilysin (NPL) is an endogenous enzyme that functions as rate-limiting step in amyloid-beta peptide (AβP) degradation [1,2]. There are reasons to believe that an imbalance between production and clearance of AβP results in its accumulation leading to development of Alzheimer’s Disease (AD) [3-6]. In several cases of AD the metalloprotease NPL brain concentration is decreased [6]. Also NPL knocked out mice exhibited AD like brain pathology and behavioural dysfunctions [4-6]. This suggests that enhancing the NPL concentration by therapeutic means may reduce brain pathology in AD. Recently some evidences suggest that focal brain injury or traumatic head injury could also induce alterations in NPL activity in the brain and in the CSF [1,3,4]. Although brain injury alone could result in deposition of AβP in the brain indicating that AD may result following brain trauma [7,8]. Thus, it is interesting to find out whether traumatic brain injury (TBI) could further exacerbate AβP infusion induced brain pathology. Furthermore, in such situation whether NPL has any protective role if administered exogenously either alone or with other neuroprotective agents e.g., cerebrolysin.

2 MATERIALS & METHODS

Experiments were carried out on Male Wistar rats (200-250 g body weight) housed at controlled room temperature (21±1°C) with 12 h light and 12 h dark schedule. Food and tap water were supplied ad libitum before the experiment. All the experiments were carried out according to the Guidelines & Care for Laboratory Animals as described by National Institute of Health and approved by Local Institutional Ethics Committee.
2.1 Alzheimer’s Disease Pathology

AD like brain pathology was produced by AβP (1-40) infusion intracerebroventricularily (i.c.v.) in the left lateral ventricle 250 ng/10 µl once daily for 4 weeks using standard procedures in normal and TBI animals [3]. After 30 days of infusion, various brain pathological symptoms were measures as described earlier [2,3,6].

![Cerebrolysin](Image)

Fig. 1. Cerebrolysin is a multimodal drug and powerful neuroprotective agent.

2.2 Traumatic Brain Injury

Traumatic brain injury (TBI) was produced in separate group of rats under Equithesin Anesthesia over the right parietal cerebral cortex by making a longitudinal incision (2 mm deep and 4 mm long) (Fig. 2). In these rats AβP infusion was made in the left lateral cerebral ventricle as mentioned above [3].

![Incision](Image)

Fig. 2. Traumatic brain injury (TBI) model showing longitudinal incision (2 mm deep and 4 mm long) over the right parietal cerebral cortex. AβP was infused in the left lateral cerebral ventricle (i.c.v.). Bar = 5 mm.

2.3 Brain Pathology

After 30 days of the 1st AβP infusion in normal or TBI rats, The BBB breakdown was examined using Evans blue (EB) and [131]^Iiodine leakage across the brain microvessels after intravenous administration of these tracers (EB 2 % solution 3 ml/kg, and radioiodine 100 µCi/kg) 5 min before the end of the experiment. Brain edema was determined using regional water content by wet and dry weights of the brain samples [3]. In separate groups of animals, immunohistochemistry of albumin, and AβP was examined using standard procedures. Neuronal changes were studies using histopathological examination of Nissl or Haematoxylin & Eosin (HE) staining [3,7,8].

2.4 TiO2-nanowired delivery of Cerebrolysin

Cerebrolysin (CBL, Ever NeuroPharma, Austria) was tagged with TiO2 nanowires according to standard protocol [3]. The TiO2 nanowired Cerebrolysin (25 µl, NWCBL) was infused into the left cerebral ventricles daily starting from 1 week after the onset of AβP infusion and terminated 1 week before the last infusion. For comparison, normal CBL was administered in identical doses instead of NWCBL [3,7,8].

2.5 TiO2-nanowired delivery of Neprilysin

Recombinant soluble neprilysin (NPL, BML-SE532-0010, Enzo Life Sciences, Inc. Farmingdale, NY, USA) was tagged with TiO2 nanowires using standard procedures. Nanowired NPL (NWNPL) was co-administered (i.c.v., 01 µg in 10 µl) with NWCBL in both healthy and TBI animals as mentioned above (see Table 1).

2.6 Statistical Analyses

ANOVA followed by Dunnett’s test for multiple group comparison with one control was used to analyze statistical significance of the data obtained. A p-value less than 0.05 was considered significant.

3 RESULTS

3.1 AD Brain Pathology in TBI

After 30 days of the 1st AβP infusion, normal rats exhibited profound breakdown of the BBB as evident with extravasation of endogenous serum albumin, Evans blue and radioiodine in the cerebral cortex, hippocampus thalamus, hypothalamus and the cerebellum that was 2- to 4-fold exacerbated in TBI animals (Table 1, Fig. 3). The brain edema formation and neuronal damages were also exacerbated by several folds in TBI group as compared to normal animals after AβP infusion. The deposition of AβP was also enhanced in the TBI group as compared to intact rats (Table 1).
Our immunohistochemistry investigation showed several fold increase in the AβP deposition along with albumin immunoreaction following TBI in AβP infused group in several brain areas [Table 1, Fig. 3]. In these AD brains AβP deposits, albumin leakage (Fig. 3), gliosis and axonal damages (results not shown) were also most prominent.

3.3 Neuronal injuries in AD brain

AβP infusion in TBI also exacerbated neuronal injuries in several brain regions e.g., cerebral cortex, hippocampus, thalamus, hypothalamus and cerebellum (results not shown). An example of cortical nerve cell damage is shown in Table 1 in AD brain in intact and in TBI groups.

3.4 Effect of Cerebrolysin Treatment

When TiO2 nanowired Cerebrolysin (25 µl, NWCLB) was infused into the left cerebral ventricles starting from 1 week after the onset of AβP infusion and terminated 1 week before the last infusion, significant reduction of AβP and albumin immunoreactivity was seen in intact animals (Fig. 3) as compared to normal cerebrolysin infusion (see Fig. 3). However, NWCLB alone has minimal neuroprotective effects following AβP infusion in TBI group (Table 1).

3.5 Effect of Neprilysin co-administration

The NPL alone was able to reduce some of the brain pathology in healthy animals after AβP infusion (results not shown). On the other hand a combination of NWCLB and NWNPL resulted in profound neuroprotection in TBI on brain pathology following AβP infusion (Table 1).

DISCUSSION

Our novel findings demonstrate that TiO2 nanowired cerebrolysin in combination with TiO2 NPL potentiates neuroprotection following AβP induced brain pathology in both normal and in TBI animals. Our observations are the first to point out that TiO2-nanowired NPL significantly thwarted AβP deposition along with albumin immunoreactivity in AD brain. Another salient new
findings of our investigation showed that a focal TBI exacerbates AβP induced brain pathology associated with greater deposits AβP in various brain areas. This indicates that our military personnel with TBI are more vulnerable to AD like symptoms with advancing age.

The reasons for exacerbation of brain pathology in AD following TBI are not well known. However, it appears that TBI induced breakdown of the BBB and AβP deposit could further aggravate pathological, immunological and neurochemical reactions leading to greater brain damage [3,7,8]. Since NPL is known to clear AβP deposition faster in AD models, obviously a combination of NWCBL and NWNPL is more effective in inducing neuroprotection in our AD model with or without TBI. Interestingly, NWCBL alone has minimal neuroprotective effects in AD model in TBI co-administration of NWNPL and NW CBL is a powerful tool to achieve greater neuroprotection in AD following TBI.

The basic mechanisms by which cerebrolysin is able to thwart brain pathology in AD could be due to strengthening of the BBB function and thereby reducing vasogenic brain edema formation [2-6]. Restoration of BBB function and reduction in brain edema are instrumental in neuronal survival [3]. Enhancement of neuroprotection by NWCBL may either be due to an enhanced penetration of the drug within the brain or to a slow degradation or metabolism of cerebrolysin within the brain [3,5,6]. A combination of NWNPL and NWCBL could be more powerful in neutralizing AβP deposition that is neurotoxic in the brain microenvironment [7,8]. Thus, co-administration of these neuroprotective agents has superior neuroprotective activity in AD models in TBI.

5 CONCLUSION

In conclusion, our observations are the first to show that AD pathology is exacerbated in TBI following identical AβP infusion. This indicates that TBI exacerbates AD symptoms. Furthermore our investigation showed that co-administration of nanowired cerebrolysin and neprilysin is far more effective in reducing AD brain pathology in TBI. This suggests that NPL and cerebrolysin are complimentary to each other and cerebrolysin may potentiate the effect of NPL in downregulating AβP metabolism in the brain, not reproted earlier.

It remains to be seen whether NWCBL and NWNPL when co-administered at various time intervals after AβP infusion in TBI could also be able to reduce brain pathology in our AD models. This is a feature that is currently being investigated in our laboratory.

6 ACKNOWLEDGEMENTS

This investigation is partially supported by grants from the Air Force Office of Scientific Research (EOARD, London, UK), and Air Force Material Command, USAF, under grant number FA8655-05-1-3065; Swedish Medical Research Council (Nr 2710-HSS), IT 794/13 (JVL), Govt. of Basque Country and UFI 11/32 (JVL) University of Basque Country, Spain. Technical assistance of Mari-Anne Carlsson and Ingmarie Olsson of Uppsala University is highly appreciated. The U.S. Government is authorized to reproduce and distribute reprints for Government purpose notwithstanding any copyright notation thereon. The views and conclusions are exclusively those of the authors and should not reflect the official policies or endorsements of the Air Force Office of Scientific Research or the U.S. Government or any of the granting organizations or collaborating entities mentioned above.

7 REFERENCES

Hari S Sharma, Dr. Med. Sci. (UU), Director Int. Expt. CNS Injury & Repair (IECNSIR), University Hospital, Uppsala University, Prof. Neurobiology (MRC); Docent Neuroanatomy (UU); Frödingsgatan 12:28, SE-75421 Uppsala, Sweden, Phone & Fax: +46 18 243899, Cell Phone: +46 70 2011 801; Email: Sharma@survsci.uu.se, hssharma@aol.com.