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ABSTRACT

Droplet-based microfluidics is the key technology for
the miniaturization and automation of assays in con-
trolled microcompartments. It relies on the use of emul-
sion droplets as microreactors each encapsulating a bi-
ological system of interest (genes, cells, drugs,...) which
can be analysed at a ultra-high throughput. However,
emulsions are metastable dispersions in which molecu-
lar transport is a major mechanism driving the system
towards its state of minimal energy. In practice, such a
molecular transport leads to the breakdown of the com-
partmentalization principle. Determining the underly-
ing mechanisms of molecular transport between droplets
is therefore essential. It is however in general challeng-
ing due to the complexity of a typical emulsion system.
Here we introduce the concept of ‘minimal emulsions’,
which are controlled emulsions produced using microflu-
idic tools, simplifying an emulsion down to its minimal
set of relevant parameters. We use these minimal emul-
sions to unravel the fundamentals of transport of small
organic molecules in water-in-fluorinated-oil emulsions,
a system of great interest for biotechnological applica-
tions. Our results are of practical relevance to guaran-
tee a sustainable compartmentalization of compounds
in droplet microreactors and to design new strategies
for the dynamic control of droplet compositions. They
also lead to new means to actively control the transport
of molecules from the interior of the droplets to their
exterior, which is a key elementary for the build up of
a new generation of cell-like microcompartments, open-
ing the door to chemical programming in soft matter
systems [1].
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1 Introduction

An emulsion is the dispersion of one fluid into an-
other, stabilised by surfactant molecules [2, 3]. Emul-
sions have a wide range of technological applications,
including the use in food products, paints, cosmetics,
chemical synthesis, and drug delivery [4]. In recent
years, droplet-based microfluidics has been proposed as
a means for the miniaturization and automatization of
biochemical assays. The billions of microcompartments

contained in an emulsion provide an environment ideal
for the parallelisation of assays [5, 6, 7, 8, 9, 10]. This
concept was shown to be very powerful for applications
relying on high-throughput parallelized measurements
such as drug screening [11, 12], biomarker analysis [13,
14, 15], cell screening [16, 17, 18] or protein engineer-
ing [19, 20].

We consider the kinetics of equilibration of concen-
tration differences between droplets containing solutes
which are poorly soluble in the continuous phase. We
use fluorinated oils as the continous phase and aque-
ous droplets as the dispersed phase. This system is of
particular interest for biochemical applications [21, 22].
Although the solubility of organic molecules in fluo-
rinated oils is normally very low [23, 24], surfactant
molecules mediate their solubility, as they do for or-
ganic systems [25], through their amphiphilic charac-
ter [21]. Thus, there is a finite solubility of encapsulated
compounds in the continuous phase, which can lead to
cross-talk between droplets.

2 Results

We introduce the concept of minimal emulsions made
of an assembly of fixed monodisperse droplets, with con-
trolled center to center distances. The microenviron-
ment of each droplet is precisely controlled, to a level
unreachable in bulk emulsification. We use this system
to study the chemical equilibration of organic molecules
in emulsions. We use fluorophores as model molecules.
We focus on three molecules, Fluorescein, Resorufin and
Rhodamine 6G which are all exchanged but exhibit time-
scales of exchange well separated, from minutes for Rho-
damine 6G to to days for Fluorescein. Resorufin is
known to display exchange with a time-scale of hours
and will be used as a model dye for convenience [32].
Two droplet populations of identical size are produced,
where fluorophores are only present in one population
(resorufin sodium salt, 100 µM). The surfactant is a
perfluoropolyether - polyethylenoxide block copolymer
(PFPE-PEG-PFPE) stabilising our emulsions against
coalescence. The intensity of the emitted fluorescent
light is proportional to the concentration of the flu-
orophore in the relevant concentration range between
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0.1 to 100 µM . Hence, the concentration of resorufin
sodium salt in individual droplets is determined by the
fluorescence intensity. Droplets are stored in our arrays
and fluorescence images are recorded every five minutes
until the fluorophore concentrations between the two
populations are equilibrated. The dynamics of trans-
port of fluorophores from the initially ‘filled’ towards
the initially ‘empty’ droplets are measured by analysing
time sequences of fluorescence images (Fig. 1).

Figure 1: Equilibration of concentration of resorufin be-
tween ajacent droplets. The process is controlled by the
diffusion through the oil phase. (scale bar 100 µm)

We repeated the experiments for various surfactant
concentration and droplet spacing. Our experiments
were consistent with a diffusion-limited model, showing
that the kinetics of partitionning between the oil and
the water is locally infinitely fast compared to the diffu-
sive flux between the droplets [1]. From this result, we
derived two methods to control chemicals in emulsion:

Emulsion-based targetted delivery – In this first
method, the local control of partitionning between ad-
jacent droplet is achieved with additivies in the aqueous
phase (here salt) which provides means to fully displace
our chemical from one droplet to the next (Fig. 2).

Partitioning control for extraction – In this sec-
ond method, the extraction of dyes is achieved by using
additives solubilized in the oil (Fig. 3). By adding car-
boxylic acids soluble in the oil, we control the extraction
of the dye.

Flow induced delivery – In this third example, the
same principle of the control of partitionning by addi-
tives can then be inverted to introduce a dye into droplet
using a dye saturated surfactant-oil mixture (Fig. 4).

3 Discussions

Our experiments show that microfluidics provides
tools to efficiently manipulate droplets to prepare, or-

Figure 2: Targetted delivery from filled droplets towards
empty droplets. Using additives (here salt) we act on the
partitionning coefficient between droplets at the scale of
the droplet. We induce a full transfert of the dye towards
the neighbouring droplets. (scale bar 100 µm)

Figure 3: Extraction of organic molecules by fluoro-
carbon additives. We can tune the extraction process
by adding carboxylic acid to the oil-surfactant mixture.
Left: low carboxylic acid concentration, right: high con-
centration (scale bar 300 µm)

der and store them in a controlled manner; emulsions
with a precisely defined microstructure are obtained for
quantitative studies of physicochemical processes at the
microscopic level. We show that the fluorophore trans-
port in fluorinated emulsions, used as a model for or-
ganic molecule transport, is, in all our experiments, lim-
ited by the diffusive transport through the continuous
phase. The dependence of the transport process on
the droplet spacing is fully consistent with an analyt-
ical model based on the proper description of the per-
meability of the oil membrane separating the droplets.
Increasing the spacing between droplets is an efficient
strategy in reducing the exchange of material between
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Figure 4: Targetted delivery of organic molecules into
droplets. (a) Principle of the transfert and measure-
ment of the concentration in the droplet over time. (b)
micrographs of the droplet in fluorescence mode. (c)
Principle of the parallelization and (d) micrograph of a
parallelized uptake experiment (scale bar 40 µm)

droplets. In combination with a decrease of concentra-
tion of surfactant, we have shown a decrease in the rate
of transport by a factor of about 30. In a bulk emul-
sion, the equivalent strategy would be to increase the
continuous phase volume fraction which is technically
challenging. The values of the diffusion coefficient of
the fluorophores in the continuous phase obtained ex-
perimentaly show that the transport of fluorophores is
mediated by large assemblies of surfactant molecules.
Simple additives, such as sodium chloride, BSA [32] or
sugars [30], not only affect the rate of transport but
also the distribution of organic molecules among the
droplets. We demonstrate how to use this concept for
the targeted delivery of compounds, a potential new
mechanism for actively feeding droplets from external
sources. In practice, special care should be taken when
changing buffer conditions in biochemical applications
or using additives such as encoding fluorophores which
might affect interactions and partitioning. In contrast,
understanding and controlling this process is essential to
deliver molecules from one droplet to the next and might
provide new tools for the chemical control of the content
of emulsion droplets. Besides straightforward applica-
tions in droplet-based microfluidic systems, we believe
that our approach will be applicable to emulsion-based
synthesis where transport of reagents between compart-
ments is crucial. Our system might also provide addi-
tional insights to understand how organic molecules can
be concentrated in a population of microcompartments,

a question relevant for compartmentalisation through
phase separation in cells [33], for prebiotic chemical sys-
tems [34, 35] and for the design of minimal functional
micro-compartments [34, 36, 37].

4 Conclusions

We produce, order, and immobilize droplets in a con-
trolled fashion [8, 31]. As a result, we access fundamen-
tal information on the rate-determining step of trans-
port. We demonstrate that the transport processes fol-
low a universal law based on Fickian diffusion, described
using simple thermodynamic arguments. We further use
our understanding of the process to effectively control
chemical transport between microreactors. We demon-
strate the simple control and programming of chemicals
in emulsions for targeted delivery into droplets at rates
compatible with the typical timescales of biochemical
assays and could be used as a building block for Syn-
thetic Biology applications.
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