
Optimized FFT QCA Implementation using Five-input Majority
Gate

Rami Akeela*

* Santa Clara University, Santa Clara, CA, USA, rakeela@scu.edu

ABSTRACT

Among the existing nanotechnologies that are
getting more attention from researchers is Quan-
tum dot Cellular Automata (QCA), which is a pos-
sible substitute for CMOS. It has the potential for
higher speed and low area and power consumption.
Therefore, researchers are constantly investigating
new implementations and applications and striving
to optimize them for different criteria. Amongst
these applications is the Fast Fourier Transform
(FFT) algorithm. A novel architecture for partial
parallel FFT processor was presented in [1], which
used inefficient older designs of adders and multi-
pliers, which had more gates and occupied more
area, and hence, consumed more power.

In this paper, new designs for a Ripple Carry
Adder and a Subtractor were developed to cater
to the need of a new, more compact multiplier,
namely, the Pipelined Array Multiplier, so one can
use them in an FFT implementation using QCA.
These designs have been designed, optimized, and
simulated using QCADesigner, and successfully achieved
a higher level of compactness and speed, largely due
to the utilization of the Five-input Majority Gate
[2].

1 Introduction

Over the years, engineers have been able to con-
tinually shrink the size of CMOS transistors and
thereby package more of them on the same chip.
However, as we approach the physical limits of photo-
lithography as well as device physics, this task has
become more expensive and complicated. Studies
show that the progress towards increasing the chip
complexity while maintaining the speed and con-
straining the power dissipation has slowed consid-
erably. It is now believed that within the next two
decades, the semiconductor industry will have to

start using new nanoelectronic devices [3]. The In-
ternational Roadmap for Semiconductors has enu-
merated several nanoelectronic alternatives includ-
ing Resonant Tunneling Diodes (RTD), Quantom-
dot Cellular Automata (QCA), and Single Electron
Tunneling (SET) [4]. Amongst all these technolo-
gies, QCA promises to provide the highest device
density with the low power consumption ans high
switching speeds [5]. In addition, QCA uses the
same technology to build both, the logic gates and
the wires carrying logic signals.

Even though QCA has attractive properties, build-
ing large QCA architectures has not been very suc-
cessful. The primary limitation to QCA is the
availability of only two basic building blocks: an
inverter and a three-input majority gate (MAJ3).
This was the motivation to introduce a new power-
ful building block for QCA technology, a five-input
majority gate (MAJ5) shown in Fig. 1 [2]. In that
paper, its uses were demonstrated and provided an
example of a bit-serial adder.

Fig. 1: A Five-input Majority Gate.

This addition to the library of QCA building
blocks inspired going back to complex arithmetic
circuits, like adders and multipliers, and study the
effect of using MAJ5 on both area and speed. In
doing so, it was obvious these new designs for adders
and multipliers should be part of larger implemen-
tations to utilize the full effect of the new compact
gate. Such applications include the Fast Fourier

210 TechConnect Briefs 2015, TechConnect.org, ISBN 978-1-4987-4730-1



Transform (FFT) algorithm, which is an impor-
tant tool in Digital Signal Processing. M. Awais
et al in [1] discussed such an application and in-
troduced a novel approach to designing a partial
parallel FFT processor, and then implemented it
using QCA technology. Their implementation used
designs for an adder and a multiplier that are in-
efficient in terms of speed and cell count, which
defeats the purpose of an FFT. In this paper, new
designs for the aforementioned implementations are
introduced, then simulated using QCADesigner.

2 Ripple Carry Adder

In this section, a QCA full adder that is copla-
nar and based on MAJ5 developed earlier is intro-
duced. In this design, at first the carry value is
calculated by a three-input majority gate (MAJ3),
and then the carry value is inverted and used as the
two inputs of the five-input majority gate (MAJ5).The
output of MAJ5 gate generates the sum value:

SUM = MAJ5(a, b, cin, cout, cout)

Cout = MAJ3(a, b, cin).

The full adder was simulated by QCADesigner,
following the same set of parameters adopted for
the bit-serial adder in [2], and using the coherence
vector, as well.

A new wire-crossing technique developed by Sang-
Ho Shin et al [6] is adopted and used in the design
of the QCA full adder. This technique is based
on the state of cells, and the relation between the
locked and relaxed states, and hence achieves a
more efficient wire-crossing, without adding more
cost to the design, in terms of delays or number of
cells.

The new design for the full adder can be seen
in Fig. 2, where the value for Carryout is read
through a wire that does not use cell rotation or
translation. Implementation of this design with
the new technique is done with minimum complex-
ity and number of cells, and with a simplification
of connections, while keeping delays the same (two
clock cycles), and consequently same processing speed.

To design a 4-bit Ripple Carry Adder, the Full
adder is used. In this design, the LSB bits are
added first and the Carryin. The next adder in

Fig. 2: The Full Adder using MAJ5.

the circuit then takes the next significant bits and
so on. Thus, four full adders need to be cascaded,
and connect the carry out of one adder to the carry
in for the next full adder. This is an ineffective
method for addition of large number of bits, but
for small number of bits, it is the least complicated
and easy-to-implement design. The layout of an
optimized RCA adder can be seen in Fig. 3.

Fig. 3: 4-bit Ripple Carry Adder (RCA) Adder us-
ing MAJ5.

It should be noted that the design uses a fewer
number of cells and is more dense due to the fact
that wire-crossing no longer needs rotated or shifted
cells. It is also more straightforward to feed the in-
puts to the adder without having to worry about
correct number of inversions (rotated cells).

3 Subtractor

After designing and optimizing the ripple carry
adder (RCA), a 4-bit Subtractor is designed and
optimized. The circuit is shown in Fig. 4.

The subtractor circuit was designed by adding
the complementary circuit. In subtraction, the com-
plement has been used in such a manner that if we
want to obtain A−B, we should calculate 2′s com-
plement of number B and add it to number A. 2′s
complement is calculated by obtaining 1′s comple-
ment of the word and adding it to 1. 1′s comple-

211Advanced Manufacturing, Electronics and Microsystems: TechConnect Briefs 2015



ment is obtained by the inverter, and number 1 is
added through the carry input.

Fig. 4: 4-bit Subtractor using a MAJ5, derived
from RCA adder in Fig. 3.

In Fig. 4, the B word’s bits were inverted each
by using an inverter for each one of them, and the
Carryin was fixed at the polarization value of 1,
which is binary 1, in order to obtain B’s 2’s com-
plement.

4 Pipelined Array Multiplier

The array multiplier, by definition, is formed
by a regular lattice of identical functional units
(building blocks), following the paper-and-pencil
multiplication algorithm with n-bit binary input
operands A = (an1, . . . , a1, a0) and B = (bn1, . . . , b1, b0),
resulting in a 2n-bit output value M = (m2n1, . . . ,m1,m0),
where a0, b0, and m0 are the least significant bits,
respectively. The smallest unit implementing all
the basic array multiplier functionality has three-
bit operand values, and maps the following compu-
tation straight on the hardware:

Fig. 5b shows the logical structure of the mul-
tiplier cell, which computes a single bit multiplica-
tion of bits ai and bj using an AND-gate, which is a
MAJ3, forming a sum si,j , which is then combined
by the full adder designed earlier with a previous
sum output si,j1 from a cell above, and a previous
carry output carryi1,j from a cell to the right [7].
The QCA implementation of the multiplier cell is
shown in Fig. 6.

This cell acts as a functional unit and a building
block to the 2-bit Array Multiplier. Corresponding
to the rows in the middle section of the equation
in Fig. 5a, each row in the multiplier array shown
in Fig. 7 forms a partial product, and sums it with
the output of the row above. The final result is
available in parallel form on the outputs Sumi,j

a0a1
b0b1

m0m1m2m3

a0b0a1b0
a0b1a1b1

×

+

(a)

(b)

Fig. 5: (a) Multiplication Operation and (b) Mul-
tiplier Cell Schematic.

Fig. 6: Array Multiplier Cell.

of the bottom cells in each column, and the most
significant bit (MSB) appears on the last carry out-
put Carryn−1,n−1. The computation’s logic struc-
ture is purely combinatorial, but performance rea-
sons usually suggest introducing some pipelining.
The characteristics of QCA technology prevent de-
signing large sections of combinatorial logic, be-
cause the reliable unclocked logic block size seems
to be limited below a primitive gate (MAJ3) [8].
Thus, the multiplier has to be divided into very
fine-grained pipeline stages and operated with the
four-phase QCA clocking.

The QCA implementation of the pipelined array
multiplier shown in Fig. 7 is depicted in Fig. 8.

5 Conclusion

In this work, new optimized architectures for
Ripple Carry Adder, Subtractor, and Pipelined Ar-

212 TechConnect Briefs 2015, TechConnect.org, ISBN 978-1-4987-4730-1



m0m1m2m3

a0b1

0
a0b0a1b0

0

a1b1

FA

FA

Fig. 7: A 2 × 2 Array Multiplier for operands a1a0
and b1b0.

Fig. 8: A QCA implementation of a 2 × 2 Array
Multiplier for operands a1a0 and b1b0.

ray Multiplier were presented. The designs were
based on the Five-input Majority gate introduced
in an earlier work. They proved to be more com-

pact, i.e. fewer cells, and faster, i.e. fewer clock
phases, and hence consumed less power. The afore-
mentioned designs were introduced as more effi-
cient alternatives to the designs adopted by the
FFT QCA implementation in [1]. Due largely to
MAJ5, the FFT implementation should achieve
higher speeds and compactness, which is main pur-
pose of an FFT. Extensions of the work reported
here can lead to a wide variety of applications in
QCA technology.

REFERENCES

[1] M. Awais, M. Vacca, M. Graziano, and
G. Masera, “Fft implementation using qca,”
in Electronics, Circuits and Systems (ICECS),
2012 19th IEEE International Conference on,
pp. 741–744, Dec 2012.

[2] R. Akeela and M. Wagh, “A five-input majority
gate in quantum-dot cellular automata,” NSTI-
Nanotech, 2011.

[3] D. A. Antonelli, D. Z. Chen, T. J. Dysart,
and X. S. Hu, “Quantum-dot cellular automata
(QCA) circuit partitioning: Problem modeling
and solutions,” in Proc. of Design Auto. Conf.,
(San Diego, CA), June 2004.

[4] “The international technology roadmap for
semiconductors: Emerging research devices.”
http://www.itrs.net/, 2005.

[5] R. Zhang, K. Walus, W. Wang, and G. A. Jul-
lien, “A majority reduction technique for adder
structures in quantum-dot cellular,” in Proceed-
ings of SPIE 5559, pp. 91–100, 2004.

[6] S.-H. Shin, J.-C. Jeon, and K.-Y. Yoo, “De-
sign of wire-crossing technique based on differ-
ence of cell state in quantum-dot cellular au-
tomata.,” International Journal of Control &
Automation, vol. 7, no. 4, 2014.

[7] I. Hanninen and J. Takala, “Pipelined array
multiplier based on quantum-dot cellular au-
tomata,” in Circuit Theory and Design, 2007.
ECCTD 2007. 18th European Conference on,
pp. 938–941, Aug 2007.

[8] K. Kim, K. Wu, and R. Karri, “Towards design-
ing robust qca architectures in the presence of
sneak noise paths,” in Design, Automation and
Test in Europe, 2005. Proceedings, pp. 1214–
1219 Vol. 2, March 2005.

213Advanced Manufacturing, Electronics and Microsystems: TechConnect Briefs 2015




