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ABSTRACT 
 

This paper introduces the dual-phase-lag differential 

equation as a possible new candidate to model heat transfer 

processes in nanostructures. The main advantage of this 

equation is that, depending on the particular choice of the 

equation parameters, it encompasses all the widely applied 

models, i.e. the standard Fourier-Kirchhoff heat equation  

or the Cattaneo-Vernotte hyperbolic equation. The analyses 

presented here are based on the solutions of the dual-phase-

lag equation obtained with the Green’s function method for 

a one-dimensional benchmark structure. 
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1 INTRODUCTION 
 

The continuous miniaturization of electronic devices 

and the increase of their operating speed has brought the 

classic, almost two-century old [1], Fourier theory of heat 

conduction to the limits of its applicability. The main fault 

of the Fourier heat transfer theory results from the fact that 

it assumes that the heat flux is directly proportional to the 

temperature gradient implying instantaneous propagation  

of temperature response throughout an entire structure.  

Consequently, the first amendment made to the Fourier 

heat conduction law by Cattaneo and Vernotte postulated 

the existence of heat flux delay with respect to temperature 

changes due to some time relaxation constant [2]-[3]. This 

theory was further developed by Tzou [4], who introduced 

yet another time constant allowing temperature responses  

to be delayed with respect to heat flux changes. All these 

modifications led to the Dual-Phase-Lag (DPL) differential 

equation describing thermal processes occurring in solids. 

More information on these macroscopic heat conduction 

models can be found in [5]. 

Theoretically, more appropriate for analyses of thermal 

phenomena in nanostructures are different microscopic 

models and approaches, such as the Boltzmann transport 

equation or the molecular dynamics simulations, reviewed 

in [6]. However, they can be employed only for analysis  

of individual devices but they are not suitable for analysis 

of larger nanosystems. Fortunately, as demonstrated in [7], 

it is possible to relate the microscopic models to the DPL 

equation, which will be analyzed in detail throughout the 

remainder of this paper. 

The following section of this paper describes the DPL 

equation. Then, its Green’s function solution for a one-

dimensional benchmark structure is discussed. In particular, 

the influence of the temperature and heat flux time delay 

values on the heat diffusion speed is investigated. Finally, 

the temperature solutions obtained for various equation 

parameter values are compared. 

 
2 DUAL-PHASE-LAG EQUATION 

 

The dual-phase-lag equation is based on the modified 

heat conduction law, according to which the temperature T 

in a material of thermal conductivity k is related to the heat 

flux q by the following equation [4]: 
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Compared to the standard Fourier law, this equation has 

two additional terms including the relaxation time constants 

q and T, which are to model the respective heat flux and 

temperature delays. Thus, the modified heat conduction law 

contains terms depending on the heat flux time derivative 

and the mixed space and time derivative of temperature. 

Without any internal heat generation and when model 

parameters do not depend on temperature, performing the 

energy balance for a unit volume the dimensionless DPL 

partial differential equation can be derived [8]: 
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This time again, compared to the classic heat equation 

two new terms proportional to the relaxation time constants 

appear. They contain the second time derivative and the 

mixed third order derivative of dimensionless temperature 

. The constant B equals T / (2q) and the dimensionless 

time  is t / (2q). 

The hyperbolic Cattaneo-Vernotte (CV) heat conduction 

equation is obtained when B equals 0 whereas the standard 

Fourier-Kirchhoff (FK) model is obtained when parameter 

B equals 0.5. It is worth mentioning that the latter condition 

implies that the FK equation can be obtained for any value 

of the relaxation time constant greater than zero as long as 

q and T are equal each other. 

238 TechConnect Briefs 2015, TechConnect.org, ISBN 978-1-4987-4730-1



structure thickness 

d = 100 nm

heat 

flux q

temperature 

T = 0

 

Figure 1: Benchmark structure. 

 

3 DPL EQUATION GREEN’S FUNCTIONS 

FOR THE BENCHMARK STRUCTURE 
 

For simple geometries, the DPL equation can be solved 

employing the analytical Green’s function (GF) method. 

These functions can be regarded as temperature responses 

at a coordinate x at time t due to the instantaneous heat 

generation at the location x’ at time t’. The GF method 

renders possible the computation of temperature solutions 

for different boundary conditions performing adequate 

integration but still using the same GF, which depends only 

on the geometry of a particular structure. 

The analyses presented in this paper are carried out for  

a thin one-dimensional slab of thickness d equal to 100 nm 

heated on one side by a heat flux q and cooled on the other 

side by the imposed isothermal boundary condition. This 

structure, shown in Fig. 1, might resemble a real electronic 

nanostructure, whose lateral dimensions are typically much 

larger than its thickness. 

Generally, as shown in Eq. 3, a Green’s function G for 

the DPL equation could be split into two parts, where the 

second component is proportional to the dimensionless time 

derivative of the first one. The dimensionless coordinates  

r and r’ are obtained from their dimensional counterparts  

x and x’ dividing them by 2 ( q)
 0.5

, where  is material 

thermal diffusivity, and the dimensionless time  is equal  

to t’ / (2q). Due to the limited space of this publication, the 

exact construction of the GFs will not be described here but 

the derivation of the formulas can be found for a general 

case in [8] and for the particular benchmark structure in [9]. 
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The main goal of the present research was to investigate 

how the heat diffusion speed depends on the value of the 

parameter B, i.e. the ratio of the relaxation time constants  

q and T. For the computations, three different values of the 

parameter B were assumed: 0.1, 0.5 and 2.0. The GF values 

computed for time instants of 500 fs, 2 ps and 100 ps are 

represented in Fig. 2 with dotted, dashed and solid lines 

respectively. The colors denote a particular value of B. 
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Figure 2: Time evolution of Green’s functions. 

Since for different time instants and parameter B values 

the GFs have different magnitudes, in order to make the 

comparison between the curves possible each curve was 

normalized with respect to its value at the left boundary and 

plotted on the logarithmic scale. Additionally, the values  

on the horizontal axis were normalized with respect to the 

structure thickness. 

Analyzing the curves in the figure, one can notice that 

the heat diffusion speed significantly depends on the value 

of the parameter B and the increase of the relaxation time 

constant T reduces the diffusion time. When T is smaller 

than q (B < 0.5), i.e. if heat diffuses slower than for the 

classic FK equation, at short diffusion times the maximum 

of the GF occurs inside the structure, what might produce 

instantaneous transient temperature rise values higher than 

in the steady state (for details refer to [10]). Although the 

transient temperature values might visibly differ for various 

values of B, all the curves eventually converge to the same 

steady state limits. 

The dependence of heat diffusion time on the parameter 

B value was investigated in more detail. The results of these 

analyses are presented in Fig. 3. The diffusion time was 

defined here as the time required to noticeably increase, i.e. 

by 1% of temperature rise value at structure surface, the 

temperature in the middle of the structure.  
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Figure 3: Dependence of diffusion time on parameter B. 
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Figure 4: Temperature time evolution. 

When B equals 0, the diffusion speed corresponds to the 

one predicted by the classic hyperbolic CV equation, i.e. 

( / q)
 0.5

 (for most solids this value is of the order of a few 

thousands of meters per second) and the heat diffusion time 

slightly exceeds 9 ps. Then, the heat diffusion time visibly 

decreases and for the FK equation (B = 0.5) it amounts  

to around 1.5 ps to reach just 7.6 fs for B = 100. 

 

4 TEMPERATURE SOLUTION 
 

Given the GF for the analyzed structure, it is possible  

to compute the temperature distribution at any time instant 

by performing time integration of the GF as shown in Eq. 4. 

Taking into account that the only factor contributing to the 

overall temperature rise is the nonhomogeneous boundary 

condition of the second kind at the left side, the GF needs  

to be evaluated only at r’ equal to 0 [8].  
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The temperature distribution in the structure computed 

according to the above formula for the FK model (B = 0.5), 

the CV model (B = 0) and the DPL model (for B = 2) are 

compared in Fig. 4. This time the values on the vertical axis 

were normalized with respect to the maximal steady state 

temperature rise, i.e. (q d ) / k. 

For the classic FK heat equation after 5 ps the surface 

temperature reaches one-fourth of the steady state value and 

the temperature response develops already in a half of the 

structure. After 20 ps the temperature response is already 

fully developed and the surface temperature reaches the half 

of its steady state value. All the computed curves match 

exactly those given in [11], where the convergence of GFs 

for the FK equation was investigated. 

On the other hand, for the CV hyperbolic heat equation 

the heat diffuses much slower and after 5 ps the wave front 

reaches only one-fourth of the structure. After 20 ps, i.e. 

just after the first reflection of the heat wave from the right 

boundary, the temperature distribution profile is close to the 

FK solution only with a slight temperature ‘jump’ resulting 

from the heat wave reflection. Unlike in the case of thinner 

structures [12], neither instantaneous negative temperature 

rise values are observed nor do temperature transient values 

exceed significantly the steady state ones. 

For the DPL model with B = 2 the temperature response 

develops much faster and the surface temperature reaches 

one-third of the steady state value after 5 ps. Nevertheless, 

in spite of the fact that the speed of the transient thermal 

processes strongly depends on the value of parameter B, all 

curves eventually converge in less than 100 ps to the same 

steady state curve which is a straight line when applying 

linear scale to both axes. 

 

5 CONCLUSIONS 
 

This paper presented the DPL equation and discussed 

the possibility of applying this equation to modeling of heat 

transfer processes at nanoscale. In particular, the usefulness 

of the Green’s function method for the solution of the DPL 

equation was demonstrated. Obviously, for more complex 

problem geometries some numerical solution method could 

be used. 

The potential attractiveness of the DPL model originates 

from the fact that this equation not only includes as its 

particular cases other equations widely used for modeling 

of thermal processes, such as the FK heat equation or the 

CV wave equation, but it could be also fitted to existing 

experimental data or some microscopic models such as the 

Boltzmann transport equation. Although dynamic thermal 

responses differ significantly for all the considered models, 

finally they converge to the same steady state temperature 

distribution. 

The simulations presented in this paper demonstrated 

that in the DPL equation the speed of heat diffusion could 

be efficiently controlled by adjusting the ratio of relaxation 

time constants, i.e. the value of parameter B. In particular, 

the simulations showed that the lowest speed is obtained for 

the CV wave equation model (B = 0) and it increases with 

the value of this parameter. 

From the practical applicability point of view, when 

modeling electronic nanosystems it should be expected that 

the range of useful values of parameter B is well over the 

one for the FK model, i.e. 0.5. Although the hyperbolic 

wave equation might be appropriate for modelling of short 

laser pulse heating [13] or similar thermal processes but the 

experimental data published in [4] and [14] suggest rather 

that in semiconductors and metals the values of parameter  

B for nanoscale devices even exceed 100 what leads to the 

phenomenon called by certain authors the ‘superdiffusion’ 

of heat. 
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