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ABSTRACT 

 
A theoretical investigation of the effects of the hill-like and 
the cup-like electric confining potentials, both parabolic 
and superimposed on an infinite spherical square well 
(ISSW) potential, on the photoionization cross section 
(PCS) in a spheroidal quantum dot is presented. As the cup-
like parabolic potential intensifies, the peak of the PCS 
becomes red-shifted for the ps→  transition, and becomes 
blue-shifted for the dp→ , fd →  (and so forth) 
transitions. The hill-like potential, on the contrary, blue 
shifts the peaks of the PCS for the ps→  transitions, while 
it red-shifts those of transitions between higher states. 
Consequently, the two potentials discriminate between 
transitions involving the ground states and those involving 
higher states. 
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1 INTRODUCTION 
 
Realization of nanostructures of different dimensions 

and geometries has been beneficial to the scientific 
community and the world at large, because of applications 
and possible applications in a wide range of disciplines like 
biomedicine [1], optoelectronics [2] and radiation detection 
[3], among others. The mushrooming of different 
techniques to obtain a plethora of nanostructures has 
prompted both theoretical and experimental research into 
these structures.  

Among quantum phenomena probed, photionization is 
equally appealing. The effect of the anisotropy of quantum 
confinement on photoionisation cross section (PCS) has 
been probed, and was shown to be appreciable for certain 
degree of anisotropies [4]. The influences of electric fields 
and intense laser fields were also reported on, revealing a 
blueshift of the peak of the PCS with increasing laser 
strength [5]. PCS of a trion (a hole or an electron bound to 
an exciton) was probed by Xie, and the effect that pressure, 
parabolic confinement frequency and hole mass has on it 
[6]. Apart from parabolic confinement, the other confining 
potential topography studied is the power-exponential [7]. 
PCS of quantum rings has also been reported, wherein 
influences of the inner radius [8] and of magnetic field [9, 
10] on the PCS are scrutinized. The role that the impurity 
position plays in modifying the PCS in a core-shell nanodot 

has been investigated [11].   In this communication, effects 
of the cup-like and hill-like parabolic confining potentials 
on the PCS for a spheroidal quantum dot (SQD) are 
investigated.    

 
2 THEORETICAL MODEL 

 
2.1 Photoionization cross section 
The system investigated is one of a spheroidal quantum dot 
(SQD) which maybe a GaAs material embedded in a 
GaAlxAs{1-x} matrix. The potentials inside the spherical dot 
assume a parabolic geometry. A bi-parabolic (cup-like) 
potential is contrasted with an inverse lateral bi-parabolic 
(hill-like) potential, each superimposed on an infinite 
spherical square well (ISSW).  Photoionization, which can 
be regarded as the probability that a bound electron can be 
liberated by some appropriate radiation [5], is given by [5-
9] 
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inE  is the effective incident electric field  and avE  is the 

average electric field in the dot of refractive index n. 
iE and fE are energies associated with initial and final 

eigen states 〉i| and 〉f| , respectively. 〉〈 i|r|f is the usual 

interaction integral coupling initial states to final states, 

FSα  the fine structure constant and r  is position vector.  

The wave functions are obtainable as solutions to the 
Schrödinger equation with the form ( ) ( )ρχφθ,YCΨ lmlmlm = , 
dependent on the potential, where ( )ρχ  is the radial 

component of the wave function satisfying the Schrödinger 
equation 
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with μ  being the effective mass of electron (of charge -e), 

ek  the Coulomb constant and ε  the dielectric constant of 

the SQD. The orbital momentum quantum number, 
( )0,1,2,...ll = , quantifies angular momentum of an electron. 
( )ϕθ,Ylm  is the usual spherical harmonic, m being is 

magnetic quantum number and lmC  is normalization 

constant. 
 
2.2 The Wave Functions 
2.2.1. The bi-parabolic (cup-like) potential 
2.2.1.1 In the presence of the impurity 
Solution to the Schrödinger equation for the bi-parabolic 
potential 
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is in terms of the Huen Biconfluent function [12, 13]; 
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 Requiring that electron wave function should vanish 
at the walls of the SQD avails the energy spectrum for an 
electron in a SQD with an intrinsic bi-parabolic potential as 
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where Eβ  is the value of β  that satisfies the condition  
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2.2.1.2 Neglecting the donor impurity 
Disregarding the electron-impurity interaction, the 
Schrödinger equation is still solvable in terms of the Heun 
Biconfluent function with parameters being identical to 
those for this potential in the presence of the donor impurity 

except for 0γ =  and 
0
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without the Coulombic interaction as  
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where 0

Eβ  is the value of 0ββ =  that satisfies the condition 

found in equation (7).  
 
2.2.2 The inverse lateral bi-parabolic (hill-like) potential 
2.2.2.1 In the presence of the impurity 
This potential is maximum at the centre of the SQD, and 
decreases parabolically towards the walls; 
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Radial component of the Schrödinger equation is also 
solvable in terms of the Heun Biconfluent function (4) but 
with 
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Application of the boundary conditions at the walls of the 
QD avails the energy spectrum as 
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where Eβ  is the value of β  that satisfies the condition set 

in equation (7). 
 
2.2.1.2 Neglecting the donor impurity 
In this case, the parameters have the same expressions as 
those for this potential in the presence of the impurity (Eq. 
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10) except for 0γ =  and 
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energy associated with the hill-like potential without the 
Coulombic interaction can be cast in the form  
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0
Eβ  still being the value of 0ββ =  that satisfies the 

condition stipulated in equation (7).  
 

3 DISCUSSIONS 
 

This section is dedicated to discussions and analysis of the 
results. Parameters used in the computations are 

e0.067mμ = , em being the free electron mass and 5.21=ε , 

pertaining to GaAs nano dots. The geometries of the 
confining potentials are illustrated in Fig 1, where 

( )22
0Rμω2=κ , which depicts the influence strengths of 

these potentials on the radial component of the ground state 
electron wave function.  By virtue of the fact that the 
 

 
Figure 1: Effects of the two parabolic potentials (which are 
the dash-dotted curves) on the ground state radial electron 
wave functions across a SQD. The plot marked with dots 
corresponds to the ground state wave function in an SQD 

with a cup-like potential while the one marked with squares 
is associated with the hill-like potential, each of strength 

15meVω0 =h . The solid unmarked plot is the ground state 
radial wave function in an SQD with a purely ISSW 

( 0meVω0 =h ). 

 cup-like parabolic potential is maximum at the centre and 
at the walls of the SQD, it reduces the ground state electron 

wave function at those points, and  merely tightens electron 
wave functions of excited states around a radial distance 
half the radius of the SQD. The hill-like potential, 
contrastingly, is maximum at the radial distance half the 
radius of the SQD (0.5R), and thus dwindles electron wave 
functions at this radial distance, and enhances wave 
functions elsewhere.  
 

The hill-like (cup-like) potential perturbs the excited 
states (ground state) more than it does the ground state 
(excited states). This gives the hill-like (cup-like) potential 
the propensity to enhance (dwindle) transition energies 

if EEΔE −=  (Fig 2). As such, intensification of the hill-
like (cup-like) potential blue-shifts (red-shifts) the peaks of 
the PCS (Fig 3). 
 

 
Figure 2: Energy differences between the ground state (s) 

and the first excited state (p) as functions of strengths of the 
parabolic potentials for the indicated radii of the SQD; the 

plots marked with dots are associated with the cup-like 
parabolic potential while those marked with squares are 

associated with the hill-like parabolic potential. 
 
The energy difference between the s and p states in an SQD 
of radius 300Å is in the vicinity of 17.762 meV in the 
absence of the parabolic potentials ( 0meVω0 =h ). Figure 4 
shows the dependence of the normalized PCS for such a 
spheroidal quantum dot on strengths of the parabolic 
potentials. If the beam energy of excitation is lower than the 
transition energies, then the cup-like potential can be used 
to capacitate photoinization by increasing its intensity until 
the transition energies are coincident with the beam energy. 
This enhances the PCS to a peak at the energy of resonance. 
The PCS will decrease with intensification of the hill-like 
potential for beam energy lower than excitation energy, 
since the potential enhances transition energy. Conversely, 
intensification of the cup-like potential will merely 
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diminish the PCS for beams energies larger than excitation 
energy, while the hill-like potential will increase transition 
energies until they equal the beam energy, thereby 
intensifying the PCS. 
 

 
Figure 3: Dependence of the normalized PCS on the beam 
energy for an ISSW ( 0meVω0 =h ) and for the cup-like 

(plot with dots) and the hill-like (plot with squares) 
parabolic potentials superimposed on the ISSW, each of 

strength 10meVω0 =h . 
 

 
Figure 4: Variation of the normalized PCS with strengths of 

the cup-like (curves with dots) and the hill-like (marked 
with squares) parabolic potentials for the different beam 

energies of excitation. 
 

Because transition energy scales inversely with the 
radius of the SQD, the two potentials afford us the ability to 
adjust transition energies without necessarily having to 
tamper with the dimensions of SQD. This is advantageous 

in cases where excitation energy is to have a specific value 
which an ISSW SQD of the required radius may not have.  

 
4 CONCLUSIONS 

Analytical expressions of electron wave functions  in a 
spheroidal quantum dot  with and without a centred donor 
impurity have obtained and utilized to probe the effects of 
the cup-like and hill-like parabolic potentials on the PCS. 
The ability of these potentials to modify transition energies 
without altering the sizes of SQDs avails nanotechnology 
immense control over tunability of these structures, through 
appropriate nano patterning. 

 
 

REFERENCES 
[1] G. Mandal and T. Ganguly, Indian J. Phys.,  85, 

1229, 2011. 
[2] M. Dhingra, A. Shankar and B. B. Tiwari, Indian J. 

Phys., 84, 1031, 2010. 
[3] L. A. Najam, N. Y. Jamil and R. M. Yousif, Indian J. 

Phys., 86, 267, 2012 . 
[4] L. Yang and W. Xie, Physica B 407, 3884, 2012. 
[5] L. M. Burileanu, J. Lumin. 145, 684, 2014. 
[6] W. Xie, Superlattices Microstruct. 63, 10, 2013. 
[7] W. Xie, Superlattices Microstruct. 65, 271, 2014. 
[8] M. Jin, W. Xie and T. Chen, Superlattices 

Microstruct. 62, 59, 2013. 
[9] M. G. Barseghyan, A. Hakimyfard, M. Zuhair, C. A. 

Duque and A. A. Kirakosyan, Physica E, 44, 419, 
2011. 

[10] W. Xie, Phys. Lett. A, 377, 903, 2013. 
[11] E. C. Niculescu and M. Cristea, J. Lumin, 135, 120, 

2013. 
[12] E. R. Arriola, A. Zarzo and J. S. Dehesa, J. 

Comput. Appl. Math., 37, 161, 1991. 
[13] E. S. Cheb-Terrab, J. Phys. A: Math. Gen., 37, 

9923, 2004.  
 

173Advanced Manufacturing, Electronics and Microsystems: TechConnect Briefs 2015




