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ABSTRACT 
 

 

Capillary spontaneous flow is an interesting solution to 

move fluids either in microgravity conditions, i.e. in space, 

in microfluidic systems. In both cases, gravity is negligible 

and capillarity is the dominant force. 

 

Spontaneous capillary flow onset as well as the dynamics of 

capillary flows have been recently documented in the 

literature for channels of different shapes, confined or open. 

However, the role of the dynamic contact angle is still 

unclear. This work aims at bringing a new light on the 

effect of the dynamic contact angle in the dynamics of 

capillary flows.  

 

Keywords: spontaneous capillary flow (SCF), capillarics, 

capillary velocity, dynamic and static contact angles. 

 

 

1 INTRODUCTION 
 

 

Capillary actuation of fluids is an interesting solution when 

the gravitational forces are small: this is the case in space , 

or in microfluidic systems. In both cases, the ratio between 

gravity and capillary forces characterized by the Bond 

number is very small.  

 

The onset of spontaneous capillary flow (SCF) and its 

dynamics have been widely investigated, first in the years 

1920s [1-3], then more recently with the development of 

microfluidic systems for biotechnology [4-9]. 

 

Most of the time, the interpretation of the dynamics of the 

flow is performed using a constant contact angle.  Although 

the study of the dynamic contact angle on the dynamics of 

wetting has been the subject of many investigations [10-

16], the effect of the dynamic contact angle during a 

sponaneous capillary flow is still unclear.  

 

In this work, we propose a correction to the capillary 

velocity that takes into account the dynamic contact angle, 

based on correlations reported in the literature. Comparison 

between static and dynamic velocities are presented.. It is 

concluded that the dynamic contact angle has an importance 

only on the few first millimeters of the channel. The length 

scale of the device is then of utmost importance. A non-

dimensional number characterizing the effect of the 

dynamic contact angle is proposed  

 

 

2 THEORETICAL APPROACH 
 

 

Let us consider a closed channel of uniform cross section 

and arbitrary shape (figure 1).  
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Fig.1. Sketch of a rectangular (A) and cylindrical channel (B).  

 

It has been shown that the capillary force writes [6,7]  

 

 cosWcap pF  ,        (1) 

 

where  is the surface tension between the liquid and air, 

and pW and  are respectively the wetted perimeter and the 

dynamic contact angles in a cross-section of the channel 

 

From a dynamic standpoint, the velocity of the capillary 

flow can be determined using a balance between capillary 

forces and friction with the wall [1-3]. The friction force is  
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         (2) 

 

where  is the local wall friction, S the wetted surface 

between the origin and the front end of the liquid flow,  

the wetted contour of the cross-section,  the averaged wall 
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friction in a cross-section, i.e.  


 dlpW  1 , and z the 

distance of the interface from inlet which depends on the 

time t. 

 

The force balance on the fluid flow is then 

 

dragcap FF
dt

dV
m  ,         (3) 

 

where m is the mass of the fluid in the channel and V the 

average velocity. The mass of fluid being proportional to 

the penetration distance, (3) can be written under the form 

 

   tzpp
dt

dV
Stz WWc   cos ,           (4) 

 

where Sc is the cross-section area and  the volumic mass of 

the fluid. The Reynolds number of the fluid being small, the 

flow is laminar. For a Newtonian fluid, the friction  then 

depends on the geometry of the channel and on the average 

velocity V. Locally, the wall fiction is 
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V
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


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            (5) 

 

where  is a local friction length and n the coordinates 

perpendicular to the wall (figure 2). 
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Fig 2. Definition of the friction factor from the velocity profile. 

 

Conceptually, the friction can be averaged in a whole cross-

section 
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where dl
pW 

111



  is by definition the average friction 

length. Note that the derivation of (6) assumes a constant 

value of the viscosity, which is the case of Newtonian 

fluids. The case of non-Newtonian fluids is more complex 

and will be the subject of further work. Using the 

instantaneous relation 

  

dt

dz
V   ,            (7) 

 

Substitution of (6) and (7) in (4) yields the differential 

equation 
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It can be shown that, most of the time in capillary 

microsystems, inertia can be neglected because the 

Reynolds number is small, i.e. 

 

)1(Re 


wV
,        (9) 

 

where w is a characteristic dimension of the channel, v the 

kinematic viscosity, and O(1) means ―order of 1‖. Instead 

of numerically integrating (10), a closed form expression 

for the travel distance z can be obtained by neglecting the 

inertial term on the left hand side of (8). Hence, we can 

write 

 





cos

22


dt

dz
.             (10) 

 

The solution of (10) is 

 

tz 



2cos .            (11) 

 

The travel distance varies as the square root of the time, in 

agrement with the Lucas-Washburn-Rideal (LWR) law for 

capillary flows inside cylinders [1-3]. The liquid velocity 

can be readily derived from (11) 

 

t
V

2
cos







 .         (12) 

 

Under this form, the fluid velocity is the product of the 

square root of a ―physical‖ velocity  —related to the 

physical properties of the materials—by the square root of a 

―geometrical‖ velocity t2 , and by the cosine of the 

dynamic contact angle. Note that the friction length   is 

purely a geometrical data (in the case of Newtonian fluids). 

The value of   can found in numerous published tables [8]. 
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On the other hand, because Vzdtdz 22  relation (10) 

immediately produces a relation between the velocity and 

the travel distance  

 

z
V

1
cos




 .          (13) 

 

 

3 DYNAMIC CONTACT ANGLE 
 

 

It has been shown that the dynamic contact angle depends 

on the capillary number [13-16]. In our case, the capillary 

number for the flow can be derived from relation (13). Let 

us recall that the capillary number is the ratio of the viscous 

forces to the surface tension forces 

 



V
Ca   .         (14) 

 

Substitution of (14) in (13) yields 

 

z
Ca


cos  .          (15) 

 

Relation (15) determines the capillary number—in the case 

of SCF—as the product of the ratio z  by the cosine of the 

wetting angle. Relation (15) shows that the capillary 

number is proportional to the non-dimensional ratio z .   

 

Let us now recall some empirical models for the estimation 

of the dynamic contact angle [12-16]. Noting 0 the static 

contact angle and  the dynamic contact angle, Bracke and 

colleagues [13] proposed the formula 

 

  2

1

00 cos12coscos Ca        (16) 

 

Relation (16) shows that the dynamic contact angle  is 

always larger than the static contact (Young) angle 0. The 

empirical correlation proposed by Seebergh and coworkers 

[14] is only slightly different.  

 

If we substitute the expression (15) of the capillary number 

in relation (16), we find the expression of the dynamic 

contact angle   

 

 
z


 coscos12coscos 00  .      (17)  

 

The cosine of the dynamic contact angle appears on both 

sides of (17) so that (17) is an implicit relation. Far from the 

channel inlet ( z  <<1), we can substitute to (17) the 

explicit formula 

 

 
z


 000 coscos12coscos  .      (18)  

 

Relations (17) and (18) are plotted in figure 3, for a flat 

rectangular channel (aspect ratio 7): the explicit formulation 

is legitimate except near the channel inlet (z=0). Note that, 

in the inlet region ( z  >1), the expression of the contact 

angle is derived from (17) is 
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Fig.3. Variation of the dynamic contact angle as a function of the 

travel distance z, for seven values of the static contact angle {20, 

30,40, 50, 60, 70, 80} degrees. The dotted lines correspond to the 

implicit solution (17) while the continuous lines correspond to the 

explicit relation (18). 

 

Substituting back (18) in the velocity expression (13) we 

find the expression for the capillary velocity 
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Or, noting   statstat VVV   the relative error due to the 

use of the static contact angle instead of the dynamic 

contact angle, where     0cos zVstat  , we find  
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4 MODELING AND EXPERIMENTS 
 

Relation (20) is plotted in figure 4 for 6d —which 

corresponds to a flattened rectangle cross section with 

w>>d —and a static contact angle of 45°.  The relative 

error is small after a few millimeters in the channel. It is 

however not negligible in the first few millimeters. 

 

Fig.4. Relative error on the velocity ( 6d  , =45°) 

 

Let us now re-analyze the case of water flowing in a 

rectangular channel composed of COC walls and a thin 

plastic cover (aspect ratio 0.3), described in [8]. We find 

that the best fit with a static contact angle is 49°, while it is 

47° using the dynamic formulation (figure 5). 

 

 
Fig.5. Comparison between experiments and model for the travel 

distance in a rectangular channel: left, travel distance vs. time; 

right, travel distance vs. square root of time. The green dots 

correspond to the experimental results, the yellow continuous line 

to the model with a static contact angle and the red crosses to the 

model with the dynamic contact angle. 

 

 

5 CONCLUSION 
 

The effect of dynamic contact angle is still controversial in 

the literature. Some papers report that the dynamic contact 

is not very different from the static contact angle [17,18], 

on the opposite some papers point out its importance [16]. 

In fact, all depends on the value of the capillary number.  

 

In this work, we showed that the usual definition of the 

capillary number can be replaced by another one, based on 

the friction length, which we have shown to be 

   coszCa  . This ―channel capillary number‖ points 

out the importance of the ratio between the friction length 

and the channel length. 

 

It is concluded that the effect of the dynamic contract angle 

strongly depends on the characteristic length of the channel. 
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