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ABSTRACT 

The modeling of many body physics near possible 

spontaneous phase separation instabilities away from half 

filling in various square and honeycomb structures provide 

an ideal playground for understanding  various competing 

phases in repulsive and attractive Hubbard models. Exact 

diagonalization, Lanczos and variational cluster 

approximation (VCA) techniques are critical for accurate 

studies of Rashba spin-orbit effects with short-range 

electron correlations to address current challenging 

problems in superconductivity, magnetism and topological 

insulators associated with numerous interfaces and 

heterostructures. The results highlight important aspects of 

interplay of the spin-orbit coupling with a magnetic field in 

graphene-like systems, tetrahedral pyrochlores, honeycomb 

sodium based iridates and unconventional superconductors 

induced by weak, moderate and strong electron interaction 

in the vicinity of half and quarter fillings. 

Keywords: VCA, Mott metal-insulator transition, phase 

separation, first order phase transition, iridates, cuprates.  

 

1 INTRODUCTION 

Electron correlations found in several transition metal 

oxides and cuprates give rise to a broad range of 

different phenomena, leading to complex phase 

diagrams, phase separation (PS) instabilities and 

spatial inhomogeneities with nanoscale spatial 

variations of electron and spin densities [1-4]. The 

nanoscale phase separation effect is fundamental for 

understanding generic phases common for small and 

large thermodynamic systems. Spontaneous segregation 

of electron charge and spin density potentially plays an 

important role in defining electron charge pairing and 

ferromagnetism. The level crossings found in the two-

dimensional (square) lattices generated by 8- and 10-

site Betts unit cells [5] further point to the existence of 

quantum critical points for phase separation 

instabilities in large size systems. In this report, we 

further study the local mechanism of electronic phase 

separation, spin-orbit (SO) couping and geometric 

effects using quantum cluster calculations (QCCs) and 

the variational cluster approximation (VCA) in the 

two-dimensional (2d) Hubbard lattice in the absence 

of long-range order. The Hubbard model in square 

clusters and 2d lattices exhibit a metal-insulator 

transition at finite on-site Coulomb interactions U. In 

general, this transition at a finite U value might be an 

intrinsic property of the Mott metal-insulator 

transition in the Hubbard lattice away from half 

filling. There are several  known striking qualitative 

effects of SO and magnetic field on electron 
correlation [6]. Below we explore the problem of PS 

instabilities in electron and spin densities by studying 

these effects near half and quarter fillings using 

different band topologies. 

2 MODEL 

We use the one-band Hubbard Hamiltonian Ĥ  in a 

transverse magnetic field for repulsive (U>0) and 

attractive (U<0) electrons 
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where the parameter ϕ in the transverse magnetic field is 

given in units of quantum phase ϕ0=hc/e and transfer 

coupling parameter t is set to 1. 
 

2.1 Band structure calculations (U=0) 

Using non-interacting electron system with U=0 one 

can perform exact band structure calculations modeled 

with SO and magnetic field in assembled nano-

ribbons (arrays of clusters) in (graphene) honeycomb 

and two leg square structures for understanding 

pyrochlore R2Ir2O and honeycomb Na2IrO3, Li2IrO 

iridates and topological insulators, associated with 

numerous interfaces and heterostructures. Fig. 1 

shows a spectrum of the four leg infinite 1d 

honeycomb ribbon (armchair) cuts out from the 

infinite 2d graphene sheet as a function of quantized 

flux at a given SO coupling. 

3. PHASE SEPARATION  

3.1 Quantum cluster calculations (U≠0) 

The finite-size clusters may be one of the few solid 

grounds available to solve this challenging problem at 
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finite U by defining canonical and the grand canonical 

local gaps in the absence of true long-range order. 

Exact solutions in small cluster “molecules”, i.e., the 

building blocks, or prototypes, of solids provide 

insight into the complexity of electron behavior in 

nanoparticles and respective bulk nanomaterials. A 

new guiding principle for the search of novel 

materials with electron instability is the proximity to 

the level crossing for spontaneous transitions 

attributed to intrinsic spatial inhomogeneities. The 

inhomogeneous concentrated system in equilibrium 

can be approximated as a quantum gas of decoupled 

quantum gas of clusters, which do not interact directly 

but exchange electrons through a thermal reservoir by 

allowing the energy and electron number to fluctuate. 

Below we use QCCs to model spin–orbit effects 

leading to distinct phases of matter. 

  
Fig. 1 The spectrum of the infinite (one-dimensional) four leg 

honeycomb ribbon structure inserted in the transverse magnetic 

field with the magnetic flux ϕ and SO coupling Vso=0.5t. The gap 

at the Fermi level (E=0 at half filling) arises due to the magnetic 

field which breaks time-reversal symmetry. 

3.2 Level  crossings 

Once the exact eigenvalues and eigenstates are 

known, the statistical many-body problem can be 

constructed using exact thermodynamic expressions 

that can be analyzed without resorting to any 

approximations [7-9]. A collection of “clusters” can 

be treated at a fixed average number of electrons ⟨N⟩ 
and total spin ⟨S⟩ in a canonical ensemble. We define 

a charge gap as Δ
c
=E(M+1,M′;U:T)+E(M-1,M′;U: 

T)−2E(M,M′;U:T) using canonical energies E(M, M′; 

U: T) with a given average number of electrons 

N=M+M′, U and temperature T determined by the 

number of up (M) and down (M′) spins with the 

average spin, S
z
=½(M-M′). The corresponding spin 

gap is defined as Δ
s
 = ½ [E(M+1, M′-1; U: T) + E(M-

1, M′+1; U: T)−2E(M, M′; U: T)]. As temperature 

approaches zero, the possible sign change in canonical 

gaps signifies the existence of level crossings related 

to first order (dramatic) changes away from half (or 

quarter) filling . The nodes of the charge gap, at which 

charge gap disappears, define the critical U points for 

the energy level crossings. The negative Δ
c, s

 gap 

regions display corresponding spontaneous PS 

instabilities. 

 
Fig. 2 Charge canonical gaps versus U at T = 0 for the 2×4 

clusters with various couplings c between square clusters at one 

hole of quarter filling, ⟨N⟩=4. The weak SO favors the Mott metal-

insulator transition away from quarter filling.. The negative gap 

regions correspond to an effective electron-electron attraction. 

The spin–orbit interaction also has quantitative and 

qualitative effects on the correlation-driven Mott 

insulator transition. Fig. 2 shows the detrimental 

effects the of spin orbit term on the negative charge 

gap. The increase seen in the gap with Vso≠0 is similar 

to the effect of weakening  the coupling between 

square clusters shown in Fig. 1. As expected, we do 

see a shift in the crossing point of U (from negative to 

positive gap) which provides stability for an insulating 

phase arising from Rashba SO coupling. 

  
Fig. 3 Charge gap in 2x4 clusters with and without Rashba SO 

term as a function of U at T = 0 and one hole off quarter filling. In 

contrast to the U>0 region the changes in the charge gap at U<0 

are insignificant. 

3.3 Negative U Hubbard model 

The phase separation with negative charge gap can be 

modeled in negative U Hubbard clusters. Fig. 3  
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displays the differences in behavior of attractive and 

repulsive Hubbard models with regard to the SO 

coupling. Notice, there is a significant shift in the 

crossing point in the vicinity of U=12.  

 
Fig. 4. Charge gap Δc of honeycomb cluster at quarter filling as a 

function of U and T = 0. The (positive) charge gap opens at 

infinitesimal U and increases monotonically. The negative spin 

gap corresponds to a phase separation instability in the spin 

density sector which manifests the transition near U=10 from an 

unsaturated magnetic moment S=1/2 into a fully saturated 

ferromagnetic with Smax=3/2. 

3.4 Saturated ferromagnetism 

We examine the effect of spontaneous phase 

separation in the spin density at quarter filling driven 

by U. Nagaoka-type intrinsic ferromagnetism is 

illustrated in Fig. 4 in a 6-site ring which shows a 

stable Mott insulating gap coexisting with the 

negative spin gap. This picture closely resembles 

Nagaoka ferromagnetism in 2d systems [10]. This 

result points to the possible existence of insulating 

ferromagnetism in graphene-like systems near optimal 

doping (quarter filling). 

3.5 Cluster geometry 

We study also the effect of cluster geometry on the 

mechanism of phase separation. In Fig. 5, a positive 

gap opens at infinitesimal U and increases 

monotonically  avoiding level crossings, i.e., there is 

no sign of a PS instability. In inhomogeneous 

concentrated systems, this description in 

thermodynamic equilibrium becomes quite accurate 

for suitable values of parameters since the lattice can 

be broken up into periodic arrays of weakly coupled 

clusters. In the VCA, the cluster-cluster interaction is 

usually added through the coupling between the unit 

cells comparable to the energy transfer scale t within 

the cluster. Below we compare the geometry 

dependence in bipartite square and honeycomb lattices 

using the disconnected square and honeycomb clusters 

(that were solved exactly) as a reference system in 

VCA.  

4. VCA CALCULATIONS 

Here we use the VCA [9] to solve the problem of PS  

in the Hubbard model on a large-size lattice by 

diagonalization in real space. Below, we investigate 

possible phase separation in both square and 

honeycomb lattices from half-filling to optimal doping 

using VCA.  

 
Fig. 5 The electron charge gap in honeycomb 6-ste clusters with 

⟨N⟩=5 electrons versus U with next nearest coupling at T=0. In 

contrast to square geometry, the charge gap evolves smoothly 

without level crossings as a function of U.  

This method is quite accurate for calculation of short-

range correlations. The grand potential Ω of the 

original system can be written as a functional of the 

self-energy provided the system is not at a critical 

point associated with a phase transition [11]  

Fig. 6 The electron filling factor n versus μ for the Hubbard model 

at different U>UC values. (left) The discontinuities at distinct n 

values in the square lattice with different n at two edges of the 

step-like discontinuous transition have the same μ value. The plots 

for the honeycomb lattice are smooth, without discontinuities, i.e., 

PS is absent in this lattice. The reference systems used in the VCA 

calculation are shown in the inset of corresponding plots. 

4.1 Mott transition at half filling 

 In two dimensions, our VCA calculations for the 

geometries provide strong support for a smooth 

second order metal-insulator transition at finite U at 

half filling. An energy gap is opened around the Fermi 

level at finite critical U in the one-particle excitation 

spectra for both (square and honeycomb) lattices.  
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4.2 Away from half filling 

Phase separation, caused by electron instabilities 

under hole doping, leads to the coexistence of 

inhomogeneous, hole-rich and hole-poor regions. This 

phenomenon closely resembles phase separation 

instabilities observed in first order phase transitions. 

The coexisting states with different electron densities 

n share the same chemical potential μ. The phase 

separation scenario is illustrated in Fig. 6 (left). We 

find strong evidence of phase separation for the square 

lattice in the underdoped region, however, there is no 

sign of phase separation in the honeycomb lattice. 

 
Fig. 7 One-particle excitation spectral functions for the Hubbard 

model at U=4 for the square lattice right before and after phase 

separation are shown at (left) an insulator with μ=1.26 (n=0.977)  

(right) a metal with μ=1.25 (n=0.947). The dotted line at ω=0 

denotes the Fermi level. At the higher electron density (n=0.977), 

a part of spectra in (left), which is enclosed in the blue square, 

shows up around the Q point (marked by red arrow) at the Fermi 

level, but it vanishes in (right) at the lower density n=0.947 

(almost no peaks in the blue square). 

5. SPECTRAL FUNCTION 

We have also extracted the spectral function for the 

two densities right before and after the electronic 

phase separation in the square lattice. The single 

particle excitation spectrum at U=4 of the square 

lattice is shown in Fig. 7. By comparing the spectral 

functions at the two densities, one can find that a set 

of narrow spectra around the Fermi surface (FS) at 

Q=(±π/2a, ±π/2a) point (see the red arrow in Fig. 7  

between the Γ and M points) which disappears when 

the density drops from 0.977 to 0.946. This indicates 

that the states near Q  become unstable as phase 

separation occurs. The scattering transfer momenta at 

Q reside on the boundary of the folded first Brillouin 

zone (FBZ) due to the period doubling of the lattice 

parameter, since the primitive unit cell of AF state 

contains two sites. The FS coincides with the borders 

of the AF FBZ with complete “nesting” after a 

translation by the Q vector of  AF local ordering. 

6, CONCLUSIONS 

We have studied possible phase separations due to 

electronic correlations in bipartite square and 

honeycomb structures. The VCA calculations in 

square clusters provide strong support for our previous 

findings about the role of the local lattice structure at a 

PS instability, i.e., the lattice geometry plays a crucial 

role in the reconstruction of the FBZ. Upon increasing 

n towards half filling, there is a critical concentration 

nc for a first-order transition between a metal and a 

Mott insulator at nonzero doping. The scenario 

obtained for phase separation is consistent with the 

Mott insulator behavior where a transition to the 

correlated insulator state occurs through a first-order 

phase transition induced by tuning correlation 

strength, temperature or doping [11]. The exact 

quantum cluster calculations in various building block 

structures demonstrate strong many body effects tied 

with Rashba SO and magnetic fields that can be 

related to pyrochlore and honeycomb iridate 

heterostructures. The results also provide  insights into 

the microscopic electronic structure of bandgap-

engineered graphene-type nanoribbon heterojunctions. 

1 ACKNOWLEDGMENTS 

The authors acknowledge the computing facilities 

provided by the Center for Integrated Nanotechnologies, a 

U.S. Department of Energy, Office of Basic Energy 

Sciences user facility at Los Alamos National Laboratory 

(Contract DE-AC52-06NA25396). The work was 

performed also, in part, at the Center for Functional 

Nanomaterials, Brookhaven National Laboratory supported 

by the U.S. Department of Energy, Office of Basic Energy 

Sciences, under Contract No.DE-AC02-98CH10886. 

REFERENCES 

[1] Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, 

Uchida S375, 561 (1995) 

[2] Hoffman JE, Hudson EW, Lang KM, Madhavan V, 

Eisaki H, Uchida S, Davis JC,  Science 295, 466 (2002) 

[3] Visscher PB, Phys. Rev. B 10:943 (1974) 

[4] Emery VJ, Kivelson SA, Lin HQ, Phys. Rev. Lett. 64, 

475 (1990) 

[5] Kocharian AN, Kun Fang, Fernando GW, JMMM 324 

3427 (2012) 

[6] W-Krempa W, Chen G, Kim YB, and Balents L, Ann. 

Rev. Cond. Matt. Phys. 5, 57 (2014) 

[7] Kocharian AN, Fernando GW, Palandage K, Davenport 

JW, Phys. Rev. B74, 024511 (2006) 

[8] Fernando GW, Palandage K, Kocharian AN, Davenport 

JW Phys. Rev. B80, 014525 (2009) 

[9] Kocharian AN, Fernando GW, Palandage K, Davenport 
JW Phys. Rev. B78, 075431 (2008). 

[10] Nagaoka Y., Phys. Rev. 147, 392 (1966).  
[11] Aichhorn M, Arrigoni E, Potthoff M, Hanke W, Phys. 

Rev. B 74, 235117 (2006)  

[12] G. Sordi, K. Haule, A.-M. S. Tremblay, Phys. Rev. 

B84, 075161 (2011) 

190 TechConnect Briefs 2015, TechConnect.org, ISBN 978-1-4987-4727-1




