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Table 1. A selection of materials from each of the main thermoelectric materials classifications. The figure of merit of each 

material is provided for relevant waste-heat recovery temperatures [7-12]. 

Classification Material 
ZT at 

Th= 500ºC 
ZT at 

Th= 800ºC 
Chalcogenide (Na0.0283Pb0.945Te0.9733)(Ag1.11Te0.555) 1.1 1.5 
Silicide Mg2Si0.6Sn0.4 0.63 1.0 
Clathrate Ba8Ga16Ge28Zn2 0.43 0.48 
Skutterudite Yb0.2In0.2Co4Sb12 0.80 0.93 
Oxide Ca2.4Bi0.3Na0.3Co4O9 0.085 0.13 
Half Heusler Zr0.25Hf0.25Ti0.5NiSn0.994Sb0.006 1.1 1.4 

 
Table 2. Exhaust flue gas temperature (heat source) and coolant fluid and temperature for thermoelectric generators if they 

were used for waste-heat recovery in three stationary applications: turbines, lehrs, and water heaters. 
Application Exhaust 

temperature 
Coolant 

temperature 
Cooling source 

Gas turbine 500°C 50-100°C Air 
Glass annealing lehr 500°C 50-100°C Closed-loop water chiller 
Water heater 800°C 25-50°C Building water 

 
Since the combustion gas stream temperature is about 
1400ºC, a thermoelectric generator embedded within the 
water heater system would still experience heat source 
temperatures near 800 ºC [13]. Some of the heat energy 
could be converted into electrical power while still 
achieving sufficient heating of the building water. 

There are a key factors which influence the suitability of 
an application for thermoelectric waste-heat recovery. The 
composition of the flue gas is critical since particulate and 
contaminants can foul the generator’s heat exchanger 
surface. Industrial processes in which raw materials such as 
metals and glass are heated in furnaces seem appealing for 
waste-heat recovery, but the practical device engineering 
required to cope with dirty flue gas may be prohibitive. The 
stability of the heat source influences the amount of thermal 
cycling the thermoelectric generator experiences. The 
cycling will affect the amount of power generated and 
cause wear and tear on the device due to varying thermal 
expansions. These considerations are important for 
combustion appliances like water heaters which turn on and 
off frequently. 

The effectiveness of the thermoelectric generator’s heat 
exchangers is critical to power output and cost. The heat 
exchanger U-value is its overall heat transfer coefficient 
and is influenced by the heat exchanger material (e.g. steel, 
copper, etc.) and the heat exchange fluids. For the two 
materials exchanging heat, the amount of heat transferred 
through the exchanger is limited by the material with the 
lower effective heat capacity (i.e. the higher thermal 
resistance). When a coolant flows through the heat 
exchanger, the effective thermal resistance can be lower by 
increasing the coolant flow rate, thus increasing the rate of 
heat transfer. However, mechanical work is required to flow 
fluid through the heat exchanger. The commercial value of 
a thermoelectric generator for waste-heat recovery is in the 
net power delivered from the system. The net power will 

decrease as the work required to boost coolant flow rate 
increases. 

At the thermoelectric generator’s hot side, the heat is 
exchanged between the exhaust gas and the solid 
thermoelectric. The U-value for the hot side heat exchanger 
was taken to be 50 W/m2K. At the cold side, heat is 
exchanged between the solid and coolant gas or liquid. The 
thermoelectric generator cold side U-values for the turbine, 
lehr, and heater applications were set at 100, 1000, and 
1000 W/m2K, respectively [14]. 

 
3 RESULTS 

 
The costs for thermoelectric power generation systems 

using six top-performing thermoelectric materials are 
provided in the figures below. Figure 2 shows the estimated 
thermoelectric generator cost for a water heater application. 
The cost is broken into two components, the raw material 
and manufacturing costs and the cost of the heat exchanger 
and ceramic insulator plates. The results for the clathrate 
and oxide sample materials demonstrate the need for a 
minimum materials performance level for a cost-effective 
device. For instance, oxides’ low performance cannot 
compensate for their low cost. On the other hand, the 
silicide material does not have the highest ZT, but the low 
cost compensates to make its cost-performance similar to 
the higher ZT chalcogenide and half Heusler materials. 
These examples demonstrate the tradeoffs between material 
and manufacturing costs and performance. The cost 
breakdown also demonstrates the significant expense 
associated with system components other than the material. 
The ceramic insulators and heat exchangers provide 
essential functionality but at an expense that outweighs that 
of the thermoelectric material. 

The generator material and manufacturing costs for 
three applications are show in Figure 3. The clathrate and 
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