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ABSTRACT

In this work we explore the use of Spin-Torque Nano
Oscillators (STNO)s to build a voltage oscillator in the
microwave range. STNOs are quite small–on the order
of 100 nm–and frequency agile. We attempt to increase
power output by investigating the dynamics of a system
of electrically-coupled STNOs. Bifurcation diagrams are
generated to better understand the dynamics of 2 cou-
pled STNOs. We then computationally calculate the
coherence parameter on a two parameter grid to study
synchronization for larger N .

Keywords: synchronization, dynamics, coherence, bi-
furcation, oscillations

1 INTRODUCTION

Spintronics is a developing field of electronics that
seeks to leverage the characteristics of electron spin.
Specifically, we are interested in the magnetization or
magnetic moment within a ferromagnetic layer. A Spin
Torque Nano-Oscillator (STNO) is a ferromagnet-based
electronics component. Under certain conditions the
magnetization will precess, causing the STNO’s resis-
tance to oscillate. Based on this oscillating resistance,
an STNO can be utilized as a microwave-frequency volt-
age oscillator. Some of the traits of STNOs include:
small size (∼ 100nm), more robust materials than semi-
conductors, and tunable over a large frequency range.
However, the power output produced in experiments is
very small; on the order of 100 nW [1]. To be viable
as an electronics component, a power output of at least
1 mW is likely required [2]. One method for increasing
power is to couple many STNOs in a single circuit. How-
ever, attempts to synchronize even two oscillators have
proven difficult [3]. We study the dynamics of coupled
STNOs to determine conditions that produce synchrony
in the system. In this paper we first analyze the equa-
tions for N = 2 oscillators arrayed in series. Simplifying
assumptions are made to reduce expression complexity
and facilitate further analysis. We then consider coher-
ence calculation as a computational method to charac-
terize the synchronization properties of larger systems
(N > 2).

2 MODEL

The magnetic moment or magnetization of a mag-
netic material is caused by electron spin and orbit. Mag-
netization in the free ferromagnetic layer of an STNO is
described by the Landau-Lifshitz equation with Gilbert
damping and Slonczewski-Berger spin-torque term (LLGS)
[4]–[8]

dm

dt
=

precession︷ ︸︸ ︷
−γm×Heff +

damping︷ ︸︸ ︷
λm× dm

dt
−

spin transfer torque︷ ︸︸ ︷
γµIm× (m×M) .

(1)
Here m represents the magnetization of the free ferro-
magnetic layer in Cartesian coordinates and γ is the
gyromagnetic ratio. λ serves as the magnitude of the
damping term. Spin-torque is the result of polarized
electrons entering the free layer. The fixed or polariz-
ing layer has magnetization direction M. Without loss
of generality, µ is assumed to equal 1. This makes the
electric current I unit-less, but does not effect the dy-
namics. Heff is the sum of several factors that can be
effectively represented as external fields. The factors
that we consider in this fashion are: uniaxial anisotropy,
demagnetization and the actual external (applied) field.

The LLGS preserves the magnitude ‖m‖2, thus mod-
eling magnetization direction on the surface of a sphere.
As in [9] a complex stereographic projection is used to
project the domain from the surface of a sphere to the
stereographic plane
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thus reducing the dimension of each oscillator by one.
Here Idc is the constant input-current to a series-arrayed
circuit (see [9]). We have chosen the uniaxial anisotropy
to be in the z-direction and with magnitude κ. The ap-
plied field is considered to be in the yz-plane and thus
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represented by ha2 = ha sin(θh) and ha3 = ha cos(θh),
where ha is the magnitude and θh the angle from the
z-axis. The betas represent resistance ratios used to cal-
culate current in the STNO branch of the series circuit
[10]. The following parameters will retain the these val-
ues throughout this work: γ = 0.0176, λ = 0.008, ha =
300, κ = 45, βRc = 0.992, βδR = 5.95× 10−4, S0 = 8400

4π .
Observe that the coupling term in (2) is a sum over

all oscillators. This is indicative of all-to-all coupling
which is represented by the symmetry group SN .

3 INITIAL ANALYSIS

As an initial analysis, we make some simplifying as-
sumptions about the system of equations. Starting with
a system of N = 2 oscillators, we choose the following
parameter values: N1 = N2 = 0.5, N3 = 0, θh = 0. This
simplifies (2) to

żj =
γ(1 + iλ)

1 + λ2

[
ihazj + iκ

1− |zj |2

1 + |zj |2
zj − µIdczj
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1− |zk|2

1 + |zk|2
zj +2πiS0

zj − zj |zj |2

1 + |zj |2

]
.

(3)

This form is convenient because it is invariant under
the substitution z = weiφ, therefore each oscillator has
S1 symmetry. Combined with the system group repre-
sentation (SN ), we now have SN × S1 symmetry. We
hope to leverage the work of [11], [12] concerning Hopf
bifurcations with SN × S1 symmetry.

To better describe the dynamics of this equation,
XPPAUT is used to create a one-parameter bifurca-
tion diagram in Idc. In figure 1, we see stationary and
limit-cycle steady-states plotted in x1 vs Idc coordi-
nates, where x1 is the real part of the first oscillator
z1 (z1 = x1 + i y1). An artifact of the stereographic
projection is that the ‘south pole’ of our sphere occurs
at |z| = ∞. In this case, there is an equilibrium point
exactly positioned at the south pole. The unstable limit-
cycle intersects this equilibrium at Idc ≈ 31.7 in a Hopf
Bifurcation (HB). The bifurcation diagram also unveils
a problem with this portion of parameter space: the
Hopf bifurcations are both sub-critical and spawn only
unstable limit-cycles. Obviously, when building an os-
cillator it is important to have stable oscillations. This
leads us to look at different values for N1 and N2.

Making a small change in parameters (N1 = 0.6, N2 =
0.4), results in a new set of dynamics shown in figure 2.
Again, this figure plots the real part of the first oscil-
lator x1 versus Idc. Due to symmetry in the system,
the bifurcation diagram is symmetric across x1 = 0.
There are now many more equilibria and limit cycles as
well as Saddle Node (SN) bifurcations. Additionally, we
now have stable oscillations in the system. Furthermore,
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Figure 1: One parameter bifurcation diagram θh =
0, N1 = N2 = 0.5. Red solid lines = stable equilib-
rium, dashed black lines = unstable equilibrium, open
circles = max/min of unstable limit cycle, closed circle
= max/min of stable limit cycle.

the majority of the stable oscillations are synchronized.
However, as in the N1 = N2 = 0.5 case, ‖z‖ = ∞ is
a stable equilibrium in the oscillating range and thus
attracts many initial conditions.

As we continue to increase N1, the region of Idc with
stable oscillations continues to expand. At the maxi-
mum value N1 = 1, we see large regions of Idc with
stable oscillations, however both the synchronized and
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Figure 2: One parameter bifurcation diagram θh =
0, N1 = 0.6, N2 = 0.4. Red solid lines = stable equilib-
rium, dashed black lines = unstable equilibrium, open
circles = max/min of unstable Limit Cycle (LC), closed
circle = max/min of stable LC, green = synchronized
LC, blue = OoP LC.
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Figure 3: Coherence calculated in two parameter space: θh vs Idc. (Top left) N = 2. (Top right) N = 3. (Bottom
left) N = 4. (Bottom right) N = 5.

out-of-phase solutions are stable. This bistability in-
dicates that the system is sensitive to initial conditions
and thus basins of attraction must be calculated to fully
characterize the system. However, even the N = 2 sys-
tem has initial conditions in four dimensions. Due to
this dimensionality, both the calculation and visualiza-
tion of basins of attraction are non-trivial problems.

4 COHERENCE CALCULATION

A system of oscillators can be characterized by its
coherence

r =
1

N

∣∣∣∣∣
N∑
k=1

eiφk

∣∣∣∣∣ , 0 ≤ r ≤ 1 . (4)

Here φk is the phase of the kth-oscillator and N is
the number of oscillators. A coherence r = 1 indi-
cates phase-synchronization while r = 0 occurs for equal

phase spacing (splay-phase) of the oscillators. The spec-
trum therein can be considered a measure of phase syn-
chronization. Figure 3 is generated by discretizing the
two dimensional parameter space (θh, Idc) on a rectan-
gular grid, generating random initial conditions for each
grid point, integrating to steady-state, and then calcu-
lating coherence. Points with no oscillations are arbi-
trarily set to −1 and appear blue in the figure. While
this technique does not completely describe the sys-
tem, it should show any regions where the synchronized
state’s basin of attraction dominates. In fact, looking
at N = 2 and especially θh > π/2, a significant region
of synchronization emerges.

As N is increased, the synchronized grid points be-
come intermixed indicating competing basins of attrac-
tion from Out-of-Phase (OoP) solutions. The general
trend is that increasing the number of oscillators N ap-
pears to decrease the likelihood of finding initial condi-
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tions that result in synchronization.

5 DISCUSSION

Given the prevalence for bistability in regions of os-
cillation, basins of attraction must be calculated to com-
pletely determine conditions for synchronization. How-
ever, for the relatively simple case of N = 2 this requires
working in and visualizing a four dimensional space. In
future work we intend to determine basins of attraction
by calculating the invariant manifolds. Ideally the work
would then be extended to larger N , but the difficulties
associated with operating in 6+ dimensions may prove
prohibitive.

Once the small N cases are fully described, we must
turn our analyses to larger networks of oscillators. The
initial results presented here suggest that it may be-
come more difficult to determine conditions for synchro-
nization as the number of STNOs N increases. Conse-
quently we must develop methods of analysis that scale
well with increasing N . One such approach is to leverage
the coupling symmetry SN and previous work [11], [12]
to analyze the symmetry-breaking Hopf bifurcations.
These principles allow us to determine the existence and
stability of all Hopf-born non-synchronous limit-cycles
in the neighborhood of the Hopf from whence they came.
By focusing on Hopfs that occur on common equilib-
rium, the analysis will scale well with N while capturing
all periodic solutions with maximal isotropy.
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