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ABSTRACT 
 

This work is devoted to a new model-less method of 

obtaining the density profile of elements in planar 

nanostructures from X-ray reflectivity data. The method has 

been tested using numerical simulations and experimental 

data for the simple multilayer systems composed of  Cr and 

Fe nanolayers. It is shown that layers thicknesses can be 

determined using an approach developped, based on the 

kinematical theory. The calculating error does not exceed 1 

Å. 
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1 INTRODUCTION 
 

Metallic multilayer nanoheterostructures are the films, 

consisting of interlaced layers of various metals with a 

thickness from several angstroms to several nanometers. The 

particular interest to these materials has arisen after finding 

of their unique electric and magnetic properties, e.g. the 

effect of giant magnetoresistance [1, 2] having the practical 

importance. Multilayer nanoheterostructures are of interest 

for the pure science too – they are the objects for studying 

the spin-dependent electron transport and the magnetic 

interactions in low-dimensional systems. 

   X-ray reflectometry is a highly sensitive non-

destructive method of the electron density profile 

determination along a normal to the surface of multilayer 

nanostructures. To evaluate the electron density variation 

with depth from the reflectivity data one uses traditionally 

the least squares method based on Parratt theory [3], when 

calculating the intensity of a scattered wave to obtain the 

agreement of the calculated signal with the experimental data 

by varying the parameters of the postulated model. However, 

it is known that in this case the solution has no stability and 

no uniqueness. 

     In this paper we describe the numerical simulations 

which were used for checking the model-less method of 

reflectometry data processing. It is shown that one can define 

the thicknesses of individual layers as well as full thickness 

of a multilayer film with error less than 1 Å. Also the 

experimental data for various multilayer types have been 

processed.  

 

 

 

 

  

2 THEORY 
 

Let us define the depth-profile of element. Consider a 

multilayer sample consisting of layers of elements A and B. 

The atomic density of element A at a certain depth z  
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where V is a volume (for example, unit cell volume), 𝑁(𝑧, 𝐴) 

- the number of atoms of type A at the depth z in this volume.  

We denote the atomic density n0(A)  for a «pure» layer of 

the element A. Then we can introduce the function 
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which is a probability of finding an atom of type A at a depth 

z.  

Properties of this function are: 

 1),( Azp  in the layer A without mixing of atoms of 

different kinds; 

 0),( Azp in the layer B;  

 at the interfaces ),( Azp  
increases (decreases).  

Function ),( Azp  is called the depth profile of the element 

A in the sample. 

The electron density at the depth z according [4], may be 

written as 

 

𝜌(𝑧) =
𝑛𝑒𝑑𝑚(𝑧)𝑁𝐴

𝑀(𝑧)
, (3) 

 

where ne - the number of electrons in the atom (molecule, 

unit cell), 𝑑𝑚(𝑧)- the mass density at depth z, 𝑁𝐴 - 

Avogadro's number, 𝑀(𝑧) - molar mass at depth z. 

Using (3) one can obtain a relationship between electron 

density 𝜌(𝑧) and the density profiles p(z): 

 

𝜌(𝑧) = ∑ 𝑝𝑖(𝑧) ∙ 𝑛𝑒
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The sum here is over all sorts K of atoms in the sample under 

investigation.  
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Using the relationship (4) we have shown, that integral 

equation, derived in the framework of the first Born 

approximation [5], which describes the relationship of the 

reflection coefficient ),( EsR  and the reflected intensity 

),(),(),( * EsREsREsI   with the electron density 

distribution, can be transformed into an equation relating the 

reflection coefficient ),( EsR  with density profiles of 

elements 𝑝𝑖(𝑧) 
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where 𝑟𝑒   is classical radius of electron, 𝑠 is z-component of 

the scattering vector, 𝑓𝑗(𝐸, 𝑠) is the atomic amplitude of 

scattering, E – photon energy, D – sample thickness. 

In real reflectivity experiment, the recorded intensity of 

the reflected rays is proportional to the square of the 

reflection coefficient modulus, i.e. phase information is lost. 

To find a phase we use the logarithmic dispersion relation 

proposed by Klibanov [6]. Then we have found a solution of 

the inverse problem for a Fredholm integral equation (5) 

using approach, that does not demands initial approximation. 

Equation (5) can be represented in a symbolic form: 

 

𝑦 = 𝐴𝑥, (6) 

 

where A is an itegral operator, x is an unknown function, y is 

an input (experimental) data. A conventional method of 

obtaining the solution for a Fredholm integral equation of the 

first kind (6) consists in the approximation of:  

 operator A by matrix Aqp using a collocation 

method,  

 y and x functions by yq  and xp vectors, where q and 

p are vector lengths,  

and in solving  a system  of linear algebraic equations 

(SLAE): 

 

       𝑦𝑞 = 𝐴𝑞𝑝𝑥𝑝. (7) 

 

There is a well-known mathematical term – condition 

number – which is used to describe how sensitive the 

solution is to changes in the input data. If we change y to y + 

Δy, the new solution  is x + Δx  with 

 

𝑦 +  𝛥𝑦  =  𝐴 (𝑥 +  𝛥𝑥).  (8) 
 

The change in x is 

 

𝛥𝑥  =  𝐴−1 𝛥𝑦.  (9) 

 

To estimate singularity of the matrix A a condition 

number is defined as follows: 
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where ‖ ‖ denotes the matrix norm.  

Matrix A is well-conditioned one if cond(A) is small 

(close to 1): the relative error in x is not much larger than the 

relative error in y. Matrix A is ill-conditioned one if cond(A) 

is large: the relative error in x can be much larger than the 

relative error in y.  

The problem (6) is ill-conditioned and has an infinite 

number of solutions. In order to restrict the class of possible 

solutions, we take into account a priori physical information 

about the solution:   

A. The solution x must be such that when it is acted 

upon the matrix of the integral operator A, the 

residual norm y -Ax  should not exceed the error 

in the experimental data δ: 

 

‖𝐴𝑥 − 𝑦‖𝐿2
= √∫(𝐴𝑥 − 𝑦)2𝑑𝑌 ≤ 𝛿 (11) 

 

B. The solution x and the first derivative of x should be 

smooth. 

C. The solution x should be non-negative for any value 

of argument. 

To solve ill-posed problem (6) numerically, a well-

known and highly regarded method of regularization by 

Tikhonov [7] is applied in our work. In its general form, the 

regularized solution xα  is defined as the solution which 

minimizes in space L2  the Tikhonov functional M: 

 

min 𝑀 = min{‖𝐴𝑥 − 𝑦‖𝐿2

2 + ‖𝐵𝑥‖𝐿2

2 }. (12) 

 

Usually, B is the matrix of dimension pp   given by  

 

































2...000

...............

0...20

0...2

0...02

B

 

(13) 

 

 

 α and β are the regularization parameters.  

The first term of Eq. (12) is the first physical requirement 

A, defined above. The presence of the term with small 

positive parameters α and β in the functional M renders the 

problem stable and assures that the function x and its 

derivative are smooth (the requirement B). Using the 

fulfillment of the extremum condition (min M = 0), we obtain 

a system of linear algebraic equations: 
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(14) 
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where AT  is a transposed matrix of dimension qp  .  

The pp  matrix AAT  is square, symmetric and 

positively semi-definite. Then the eigenvalues of the 

regularized matrix  BAAT   are positive. In this case it is 

possible to use for inversion of the matrix  BAAT   the 

well-known linear algebra methods such as Gauss method, 

square-root method, etc.. As a result, we have an  

approximate regularized Tikhonov solution: 

 

  yABAAx TT 10 
 . (15) 

 

Then we can refine this solution, using the iteration 

formula 

 

   )( 11 
 nTTn BxyABAAx  (16) 

 

where n is an iteration number. 

 

3 EXPERIMENTS 
 

Three samples have been chosen for performing the x-ray 

reflectivity experiments: 

 A thin film of pure Cr on sapphire substrate Cr(150 

Å)/Al2O3; 

 A two-layer film Cr(20 Å)/Fe(130 Å)/Al2O3. 

Samples have been synthesized by a molecular-beam epitaxy 

method in the Institute of Metal Physics UB RAS. 

Fe and Cr belong to a group of 3d transition metals and 

there atoms have the similar electronic structure. It results in 

a small difference of the atomic scattering factors, and this is 

very difficult to distinguish these metals in the x-ray 

reflectivity experiment. This is the problem of low contrast. 

It will be shown, that method of the experimental data 

processing, which is under consideration in this paper, can 

solve this problem and give us opportunity to determine the 

layer thicknesses with sufficient accuracy. 

The experiments on x-ray reflectivity have been 

performed at the station of precise x-ray optics of the 

synchrotron “Siberia-2” at the Kurchatov centre of 

synchrotron radiation and nanotechnology (Moscow, 

Russia).  

The photons of required energy (5991 eV, 𝜆 = 2,06951 

Å) were picked out from primary beam with vacuum double-

crystal monochromator. The beam vertical size is 18 μm, 

horizontal size is 6,2 mm. There is no additional 

monochromatization for the reflected beam, its intensity was 

registered with the semiconductor germanium detector and 

was normalized on the primary beam intensity, which was 

measured by monitoring camera. All experiments have been 

performed on the air, at room temperature and atmospheric 

pressure, without any magnetic fields. 

 

4 RESULTS AND DISCUSSION 
 

The first step is to test the method using the numerical 

simulations. The models of concentration profiles for our 

samples have been constructed. Using equation (5), the 

model reflectivity curves have been calculated. Then we 

used them as an input data for the inverse problem solving 

and the determination of the concentration profile and layer 

thicknesses. 
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Figure 1: The numerical simulations for structure Cr/Fe/Al2O3. Determination of the concentration profile derivatives for Cr (left) 

and Fe (right). 

 

Layer or interface Cr oxide Cr Cr/Fe Fe Fe/Al2O3 

Model 4,0 20,0 4,0 130,0 4,0 

Solution 4,0 20,1 4,2 130,3 4,5 
 

Table 1: Results of the numerical simulations (layers and interfaces thicknesses) for two-layer structure Cr/Fe/Al2O3. All values 

are given in angstroms. 
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Let us consider the model data for the single layer sample 

Cr/Al2O3. According to the solution the film thickness is 

144,0 Å, the model value is 143,5 Å.  Thus the absolute error 

of a thickness determination via this method is ±0,5 Å. The 

R-factor of the model and obtained curves 𝐼(𝑠) is 5,3%. 

The experimental results have given the thickness value 

143,4±0,5 Å, which coincides with the data processing via 

Parratt method. The R-factor for the reflection intensity 

curves is 2,4%. 

The results for two-layer model are depicted at Fig. 1; 

numerical data are presented in table 1. One can see that 

solution reproduces all model features quite good; 

discrepancy between model and solution values of layers 

thicknesses and interfaces width does not exceed 0,5 Å. This 

quantity has been accepted as absolute error of the method. 

The experimental results of determining of the layers 

thicknesses and interfaces width in two-layer sample are 

depicted at fig. 2; numerical values are presented in table 2. 

The experimental values of layers thicknesses does not 

coincide with the synthesis parameters in the permissible 

range of absolute error. There are some reasons for this fact: 

1. The systematic and random errors which occur in 

the determination of speed and time of a sample 

growth. It results in that real layers thicknesses 

really differ from expected ones. 

2. A substrate roughness, which dimensions 

appreciably exceed the interatomic distances. The 

statistic model of concentration profile, which is 

used in the described techniques, does not take such 

roughness into account. This fact leads to additional 

errors in the determination of thickness of a layer, 

which lies directly on the substrate. 

3. A necessity to take diffuse scattering and 

instrument function into account. The effect of 

diffuse scattering is significant if the roughness 

inherits through the film. 

All of these reasons can be taken into account and 

consequently the techniques accuracy can be improved. 

Nevertheless, one already can obtain the results, similar to 

that come out of Parratt algorithm, but without any specific 

assumptions about concentration profile of the sample. 
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Figure 2: Experimental results for the nanoheterostructure Cr/Fe/Al2O3: experimental and calculated reflectivity curves 

(left) and concentration profiles (right). 

 

Layer or interface Cr oxide Cr Cr/Fe Fe Fe/Al2O3 

Thickness 4,0±0,0 22,1±0,1 5,1±0,2 132,4±0,3 3,2±0,5 
 

 

Table 2: Experimental results: layer and interfaces  thicknesses in two-layer system Cr/Fe/Al2O3. All values are given in 

angstroms. 
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