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ABSTRACT 

       A computational model is introduced for predicting the 

field-directed assembly of colloidal magnetic particles 

under the influence of a high-gradient magnetic field and 

the manipulation of assembled particle microstructures in a 

time-varying field. The model is based on a modified 

discrete element method and takes into account several 

competitive effects including the applied-magnetic force, 

induced magnetic dipole-dipole interactions, Brownian 

dynamics, Van der Waals interaction, viscous drag and 

hydrodynamic interactions among the particles. A dynamic 

time-stepping approach introduced to stabilize and 

accelerate the computation. The model is useful for 

predicting the formation of self-assembled micro and nano 

structures of magnetic nanoparticles and the stability of 

such structures in a time-varying field. The model is 

demonstrated via application to various nanoparticle 

systems. 

 

 Keywords: magnetic nanoparticle self-assembly, magnetic 

dipole-dipole interactions, magnetic particle chains, 

magnetic particle chain dynamics in a time-varying 

magnetic field. 

 

1 INTRODUCTION 

The interest in magnetic particles and ferrofluids has 

grown substantially in recent years as their applications 

continue to proliferate. Current applications include field-

directed transport of biomolecules and therapeutic drugs 

[1], enhanced gene transfection [2,3], bioseparation and 

sorting [4], high-density magnetic data storage, ferrofluid 

seals and pumps, microfluidic mixers, and highly sensitive 

magnetoresistive-based sensors, among many others. 

However, despite the widespread and growing use of 

magnetic nanoparticles, there are many fundamental aspects 

of their collective behavior that remain unknown. Areas of 

particular interest are use of field-directed assembly to form 

micro and nanostructured magnetic media and the 

controlled manipulation of assembled structures using time-

varying fields. In this paper, we present a computational 

model for predicting the assembly of magnetic particles 

using high-gradient fields and the dynamics of particle-

based microstructures in time-dependent fields. The model 

involves the numerical integration of a Langevin equation 

that accounts for interparticle dipole-dipole effects, (that 

drive particle assembly), viscous drag, fluid-mediated 

(hydrodynamic) particle-particle interactions and 

Smoluchowski's theory of Brownian motion. We use 

dynamic time-stepping and analytical expressions for the 

magnetic force to greatly accelerate and stabilize the 

computations. We discuss the model in detail and 

demonstrate its use in the analysis of both high-gradient and 

time-varying magnetic particle systems (Fig. 1).   

2   THEORY AND MODELING 

The behavior of colloidal magnetic particles under the 

influence of an applied field is governed by several factors. 

These include the applied magnetic force, interparticle 

dipole-dipole interactions, fluidic drag, Van der Waals 

 
 

Fig.1 Magnetic particle systems and fields: (a),(b) 

computational domain and field gradient in (a) the gap 

region between two rare-earth magnets; and (b) at the 

edge of a single magnet; and (c) time-harmonic  

magnetic field components for investigating the stability 

of magnetic particle microstructures. 
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force, Brownian dynamics and interparticle hydrodynamic 

interactions due to lubrication effects. We include these 

effects into our model as force terms in a Langevin 

equation. We predict the assembly of magnetic particles 

and the motion of particle microstructures by numerically 

integrating this equation using a self-adjusted time step to 

accelerate and stabilize the computation. The various terms 

in the model and its implementation are described in detail 

in the following sections. 

2.1 Magnetic Force 

The magnetic force on a magnetic particle is computed 

using the “effective” dipole moment method in which the 

particle is modeled as an “equivalent” point dipole with an 

effective moment 𝒎𝑒𝑓𝑓. The force on the particle is given 

by 

                                  𝐹𝑚,𝑖 = 𝜇𝑓(𝑚𝑖,𝑒𝑓𝑓 ∙ ∇)𝐻𝑎                       (1) 

 

where  𝜇𝑓  is the permeability of the fluid and  𝑯𝑎  is the 

applied magnetic field intensity at the center of particle. 

The moment 𝒎𝑒𝑓𝑓  can be determined using a 

magnetization model that takes into account self-

demagnetization and magnetic saturation of the particles [1] 

 

                                       𝒎𝑖,𝑒𝑓𝑓 = 𝑉𝑝𝑓(𝐻𝑎)𝑯𝑎                         (2) 

where                                                          

 

𝑓(𝐻𝑎) =

{
 
 

 
 
3(𝜒𝑝 − 𝜒𝑓)

(𝜒𝑝 − 𝜒𝑓) + 3
  𝐻𝑎 < (

(𝜒𝑝 − 𝜒𝑓) + 3

3𝜒𝑝
)𝑀𝑠𝑝

       𝑀𝑠𝑝 𝐻𝑎⁄        𝐻𝑎 ≥ (
(𝜒𝑝 − 𝜒𝑓) + 3

3𝜒𝑝
)𝑀𝑠𝑝

(3) 

 

 

Here,  𝑉𝑝 =
4

3
𝜋𝑅𝑝

3  is the volume of particle, 𝜒𝑝  and 𝜒𝑓  are 

the magnetic susceptibilities of the particle and fluid, 

respectively, 𝑀𝑠𝑝  is the saturation magnetization of the 

particle. Thus, the magnetic force can be rewritten as 

 

                    𝑭𝑚,𝑖 = 𝜇𝑓𝑉𝑝𝑓(𝐻𝑎)(𝑯𝑎 ∙ 𝛁)𝑯𝑎 .                         (4) 

 

This can be determined once an expression for the applied 

field is known. The field can be obtained in closed-form for 

isolated rare-earth permanent magnet structures. 

 

2.2 Magnetic Dipole-Dipole Interactions 
 

In the presence of an applied magnetic field, 

superparamagnetic nanoparticles become magnetized and 

aquire a magnetic moment 𝒎𝑒𝑓𝑓  as described above. The 

dipole-dipole potential energy between particles is given by 

the following equation 

 

𝐻𝑑𝑑,𝑖𝑗 = −
𝜇𝑓

4𝜋
(3

(𝒎𝑖,𝑒𝑓𝑓∙𝒓𝑖𝑗)(𝒎𝑗,𝑒𝑓𝑓∙𝒓𝑖𝑗)

𝑟𝑖𝑗
5 −

𝒎𝑖,𝑒𝑓𝑓∙𝒎𝑗,𝑒𝑓𝑓

𝑟𝑖𝑗
3 )       (5)  

where 𝒎𝑖,𝑒𝑓𝑓  and 𝒎𝑗,𝑒𝑓𝑓  are the effective magnetic 

moments of particles i and j, respectively, 𝒓𝑖𝑗  is the 

displacement vector between two particles. The magnetic 

dipole-dipole force is obtained as the gradient of the 

potential, 

                                𝑭𝑑𝑑,𝑖𝑗 = −𝛁𝐻𝑑𝑑,𝑖𝑗 .                                    (6) 

 

2.3 Van der Waals interaction 
 

The Van der Waals force is taken into account in two 

parts, i.e. attractive and repulsive force components. We 

assume that the nanoparticles are hard spheres, which 

means that they cannot compress each other. The repulsive 

force is used to prohibit particle overlap. 

The attractive part of Van der Waals interaction is 

calculated using the following expression: 

 

                𝑭𝑣𝑑𝑤,𝑖𝑗 =
𝐴

6

𝑑𝑖
6

(ℎ𝑖𝑗
2 + 2𝑑𝑖ℎ𝑖𝑗)

2(ℎ𝑖𝑗 + 𝑑𝑖)
3
              (7) 

 

where 𝐴 is the Hamaker constant and ℎ𝑖𝑗 is the surface-to-

surface separation distance between particles i and j. At any 

time step, if the surface-to-surface distance is less than 1% 

of particle diameter,  ℎ𝑖𝑗  is reset to 1% of the radius to 

avoid particle overlapping. 

Based on the potential model proposed by Buckinghan, 

the repulsive part of Van der Waals interaction is 

exponential, i.e. 

                           𝑭𝑟𝑒𝑝,𝑖𝑗 = 𝐾1𝑒
𝐾2(

𝑟𝑖𝑗
2𝑅𝑝

−1)
                               (8) 

 

where  𝐾1 and 𝐾2 are parameters depending on the material 

of nanoparticle and fluid properties. Here, we assume that  

𝐾1 =
3𝜇𝑓(𝒎𝑖,𝑒𝑓𝑓∙𝒎𝑗,𝑒𝑓𝑓)

32𝜋𝑅𝑝
4   in order to balance the magnetic 

dipole-dipole force to avoid partice overlapping. 𝐾2  is a 

constant and must be negative to give a decaying 

characteristic. It is selected via a trial and error approach. 

On one hand, a large 𝐾2 gives rise to a steeper decay, which 

more closely approximates reality. However, a large 

number will make the repulsive force extremely large for 

small distances, which leads to numerical instability. A 

value of 𝐾2 = −50 was chosen as a balance between these 

two competing factors based on numerical experiments. 

 

2.4 Hydrodynamic Interaction Effects 
 

Hydrodynamic interactions between particles become 

important at small surface-to-surface separation distances. 

The force between two neighboring particles is based on 

lubrication theory and can be expressed as follows 

 

                               𝑭𝑙𝑢𝑏,𝑖𝑗 =
6𝜋𝜇𝑓𝑽𝑟

ℎ𝑖𝑗

𝑑𝑖
2

16
                                 (9) 
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This force depends on the surface-to-surface separation 

distance ℎ𝑖𝑗  and the relative velocity 𝑽𝑟  between 

neighboring particles. Also, in this model, when the 

surface-to-surface distance is less than 1% of particle radius,  

ℎ𝑖𝑗 is reset tot 1% of the radius to avoid the particle overlap. 

 

2.5 Brownian Motion 
 

Brownian motion must be considerd when predicting 

the dynamics of nanoscale particles. We use the following 

equation to account fro these effects   

 

            < 𝑥2 >=
𝑅𝑇

6𝜋𝜂𝑅𝑝𝑁
∙ (2∆𝑡) =

2𝑘𝐵𝑇

𝐷
∙ ∆t                (10) 

 

where kB is Boltzmann’s constant and  𝐷 = 6𝜋𝜂𝑅𝑝 is the 

Stokes’ drag coefficient.  

 

2.6 Netwon’s Equation of Motion 
 

Particle motion is predicted using Newton’s law of 

motion: 

 

                              𝑚𝑖

𝑑2𝒙𝑖
𝑑𝑡2

= 𝑭𝑡𝑜;,𝑖 + 𝑭𝐷,𝑖                            (11) 

𝑭𝑡𝑜;,𝑖 = 𝑭𝑚,𝑖 +∑(𝑭𝑑𝑑,𝑖𝑗 + 𝑭𝑣𝑑𝑤,𝑖𝑗 + 𝑭𝑟𝑒𝑝,𝑖𝑗+𝑭𝑙𝑢𝑏,𝑖𝑗)

𝑁

𝑗=1
j≠i

 

 

where 𝒙𝑖(𝑡) is the trajectory of the i’th particle and 𝑭𝐷  is 

the viscous drag force 

                                         𝑭𝐷,𝑖 = 𝐷
𝑑𝒙𝑖
𝑑𝑡
.                                 (12) 

 

In this equation 𝐷 = 6𝜋𝜂𝑅𝑝 is the Stokes’ drag coefficient, 

𝑘𝐵 is the Boltzmann constant, and 𝜂 is the fluid viscosity. 

After combining Eqs. (11) and (12) we obtain 

 

                                 𝑚𝑖

𝑑2𝒙𝑖
𝑑𝑡2

+ 𝐷
𝑑𝒙𝑖
𝑑𝑡

= 𝑭𝑡𝑜;,𝑖                      (13) 

 

The left-hand side of Eq. (13) represents the  trajectory of a 

an individual particle, while the right-hand side represents  

the total force acting on it. This second order equation can 

be reduced to a system of first order equations, which cane 

be numerically integrated ato achieve equation (14) and 

(15), which includes a time step 𝜏: 
 

∆𝒙𝑖 =
𝑭𝑡𝑜𝑙,𝑖
𝐷

𝜏 +
𝑚𝑖

𝐷
(𝒗𝑖,0 −

𝑭𝑡𝑜𝑙,𝑖
𝐷

)(1 − 𝑒
−
𝐷
𝑚𝑖
𝜏
)            (14) 

𝒗𝑖,𝑓 =
𝑭𝑡𝑜𝑙,𝑖
𝐷

+ (𝒗𝑖,0 −
𝑭𝑡𝑜𝑙,𝑖
𝐷

) 𝑒
−
𝐷
𝑚𝑖
𝜏
                                   (15) 

 

where 𝜏 is a time step and  𝒗𝑖,0 and 𝒗𝑖,𝑓 are the velocity of 

particle at the beginning and ending of this time step, and 

∆𝒙𝐵,𝑖 is the displacement due to the Brownian motion. Here, 

the time step 𝜏  is designed as a self-adjusted time step, 

which is determined by the relative velocities  𝑽𝑟  and 

surface-to-surface separation distance ℎ𝑖𝑗  to accelerate the 

simulation process. When the time step 𝜏 is large enough 

(𝜏 ≫
𝑚𝑖

𝐷
 ) and Brownnian motion is taken into consideration, 

Eq. (14)  and (15) can be simplified as follows 

 

           ∆𝒙𝑖 =
𝑭𝑡𝑜𝑙,𝑖
𝐷

𝜏 +
𝑚𝑖

𝐷
(𝒗𝑖,0 −

𝑭𝑡𝑜𝑙,𝑖
𝐷

) + ∆𝒙𝐵,𝑖 .           (16) 

 

                                   𝒗𝑖,𝑓 =
𝑭𝑡𝑜𝑙,𝑖
𝐷

                                         (17) 

 

In the folowing anaysis 𝜏 is self-adjusted (usually, 102
𝑚𝑖

𝐷
<

𝜏 <
 ℎ𝑖𝑗

3𝑉𝑟,𝑖𝑗
) to accelerate the simulation. 

3   RESULTS 

       We demonstrate the model by predicting particle 

dynamics and self-assembly in high-gradient fields as 

shown in Fig. 1a,b and rotation of an assembled chain of 

particles in a sinusoidally time-varying field as shown in 

Fig.1c. Fig.2 and Fig 3 show the simulation results 

achieved from our model. The particles are assumed to be 

Fe3O4, which has a density of 𝜌𝑝 = 5,000 𝑘𝑔/𝑚3  and 

saturation magnetization 𝑀𝑠𝑝 = 4.78 × 105 𝐴/𝑚. 

       Figure 2a shows a time sequence of the dynamics of 

magnetic particles (𝑅𝑝 = 100 𝑚𝑚) in water in the gradient 

 
Figure 2. Dynamics and assembly of magnetic 

nanoparticles in gradient magnetic fields: the 

computational domain is located (a) the in the gap 

between two rare-earth magnets as shown in Fig. 1a; (b) 

at the edge of one isolated magnet as shown in Fig. 1b. 
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field shown in Fig. 1a. The field is provided by two infinite 

rectangular rare-earth magnets with a height and width of   

100 m and 40 m respectively. The magnetization of the 

magnets is 𝑀𝑠 = 9.55 × 10
5 𝐴/𝑚 and there is a 4μm gap 

between them. The particles are initially at rest and 

randomly distributed in the computational domain, which 

has impermeable walls. The model predicts that the 

particles assemble into a close packed film above the gap 

within 16 ms. A similar analysis is shown in Fig.2b, where 

the computational domain is now located at the edge of a 

single isolated rectangular magnet as shown in Fig. 1b. The 

magnet has a height and width of 100 m and 60 m, 

respectively. It takes approximately 50 ms for the particles 

to form a close packed structure at the edge of the magnet 

where the field gradient is highest. These simulations took 

approximately 12 hours to complete on a workstation. In 

both simulations, we find that the particles do not move in 

isolation, but rather tend to assemble with neighboring 

particles during the transport process. 

     Next we study the stability of particle chains in a 

rotating field with components as shown in Fig. 1c. We 

investigate the stability of this microstructure as function of 

its length and the rotation frequency of the fields. As shown 

in Fig. 3, different chain lengths respond differently. For a 

short 9 particle chain in a low 100 Hz frequency field, the 

chain is stable and responds to the field rotation without 

delay (Fig. 3a). There is a slight delay when the chain is 

subjected to a 1000 Hz field (Fig. 3b). On the other hand, a 

longer 16 particle chain exhibits a delay with respect to the 

field even at 100 Hz (Fig. 3c). The reason for this is 

because the viscous drag increases with chain length. At a 

higher frequency of 1000Hz the longer chain becomes 

unstable and breaks into two smaller chains at its center as 

shown in Fig. 3d [5,6]. These separate chains rotate 

independently with the external field without delay. They 

temporarily reassemble into a longer chain and then break 

apart again in a time-wise periodic fashion. This behavior, 

and the ability to predict it, could be useful for applications 

in microrheology and micromixing.  

4   CONCLUSIONS 

      We have presented a computational model for 

predicting the dynamics and assembly of magnetic particles 

in gradient and time-varying magnetic fields. We have used 

the model to study the assembly process and have found 

that interparticle dipole-dipole interactions are more 

important for smaller particle (𝑅𝑝 < 102𝑛𝑚) systems. We 

have investigated the behavior of chain-like particle 

microstructures in rotating magnetic fields and found that 

their stability depends on their length (i.e. number of 

particles) and the frequency of the field rotation. The 

stability decreases with increasing frequency because of the 

effects of higher viscous drag. The model presented here is 

relatively easy to implement and runs efficiently on a stand-

alone workstation. It should be of considerable use in the 

development of a broad range of novel materials and 

processes involving magnetic nanoparticles and ferrofluids.  
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Fig.3 Microstructure of particles’ chains in time-varying 

magnetic field with different frequency: (a) a 9-partile 

chain in a 100 Hz field; (b) a 9-partile chain in a 1000 Hz 

field; (c) a 16-partile chain in a 100 Hz field; (d) a 16-

partile chain in a 1000 Hz field. 
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