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ABSTRACT

In this work, we analyze self-heating in suspended
single layer grahpene (SLG) by using temperature de-
pendent flexural phonon (ZA) dominated thermal con-
ductivity (κ) for both isotopically pure and impure cases
on the basis of second order three phonon Umklapp,
mass difference and edge roughness scatterings. This
is followed by the extraction of temperature dependent
electrical resistance (R(T )) of SLG sheet as a result of
Joule-heating along the sheet when a constant current
is passed through it. It is found that pure SLG sheet
leads to a low rising in temperature. However, with the
addition of isotopic impurities, κ falls down as a result
of mass difference scattering which significantly rises the
temperature along the sheet. The methodologies as pre-
sented here can be used for obtaining an accurate anal-
ysis of the temperature profile along the SLG based in-
terconnects and hence to predict the hot-spot location
within the chip.

Keywords: Joule heating, single layer graphene, ther-
mal conductivity, flexural phonon.

1 INTRODUCTION

Tremendous rise in Joule-heating in conventional Cu/Al
interconnects inside modern ICs due to continuous down-
scaling has led down ITRS [1] to ensure on material al-
ternatives that surpasses their break-down current den-
sity and thermal conductivity (κ) (106 A cm−2 and
401 Wm−1K−1 and 237 Wm−1K−1 at 300 K) beyond
room temperature (RT). In recent years, carbon nano-
materials, like metallic single-walled carbon nanotubes
(SWCNTs) and single layer graphene (SLG), have been
found to possess very high RT mobility, break-down cur-
rent density and κ (of the order of 20,000 cm2V−1s−1

to 2, 00,000 cm2V−1s−1, 108-109 Acm−2 and 600-7000
W−1K−1, respectively [2,3]). However, there is a tremen-
dous controversy that whether these phenomena are due
to LA/TA [2,3,4,5,6] or flexural (ZA) phonon values
[7,8,9]. A fundamental physics-based model for electro-
thermal resistances is thus strongly needed in order to
estimate the Joule heating/temperature rise and hot-
spot location, cross-talks, and electro-migration effects
in bundles and layers of these materials for optimizing
power dissipation calculations and providing a model of
simple carbon based IC prototype.
In this work, we analyze self-heating in suspended SLG
by using temperature dependent ZA dominated κ [11]

for both isotopically pure and impure on the basis of sec-
ond order three phonon Umklapp, mass difference (MD)
and edge roughness scatterings. It is demonstrated that
a quadratic ZA phonon exhibits a T−2 law beyond room
temperature on κ, whereas below room temperature the
trend matches with the experimentally established T1.5

behaviour [2,3,10]. This is followed by the extraction of
R(T) as a result of Joule-heating along the sheet when
a constant current is passed through it [12]. By incor-
porating the physics based analytical models of R(T )
and κ into Joule-heating equation, one can accurately
estimate the temperature distribution along the SLG
sheet. The temperature profile along the metallic SWC-
NTs has already been reported by the authors [13] and
in the present work we restrict our analysis to the SLG
sheet only. It is found that pure SLG sheet leads to a
low rising in temperature. However, with the addition
of isotopic impurities, κ goes down due to increased MD
scattering rate which significantly rises the temperature
along the sheet. The methodologies as presented here
can be used for obtaining an accurate analysis of the
temperature profile along the SLG sheet and hence to
predict the hot-spot location, thermal cross-talk, elec-
tromigration effects within the chip using carbon as in-
terconnect material.

2 MODEL DEVELOPMENT AND

DISCUSSIONS

The realization of the second order three phonon
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tant scattering rate (τ−1
R ) by Matthiessen’s rule: τ−1
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E . The parameters |γZA|, ωB, M , F ,

Γm, ∂ωq/∂q, S0 are the Gruneisen parameter, phonon
branch frequency at the zone boundary, mass of the car-
bon atom, form factor, strength of isotopic impurity, the
ZA phonon velocity where q is the ZA phonon vector and
the cross-section area per one atom ((= δ×r0) where r0
= 0.14 nm is the carbon-carbon distance and δ=0.335
nm is the layer thickness of an SLG) respectively. T ,
L, and W are the temperature, length and width of
the suspended SLG respectively. The flexural phonon
dispersion relation thus can be written as ωq = αq2 in

which α =
√

κ0

ρ0

≈ 4.6 × 10−7 m2s−1 denotes the ZA
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phonon diffusion constant [14,15].
We start with the expression of the steady-state Joule-
heating equation with a temperature dependent ther-
mal conductivity along the suspended SLG sheet length
−L/2 < x < L/2 [12] and assuming the contacts to be
ideal

A∇ (κ∇T ) + p = 0 (1)

whereA = δW is the cross-sectional area, p = i2DR(T )/L
in which iD is the constant current flowing from left to
right contact, R(T ) is the linearized Boltzman temper-
ature dependent electrical resistance of the SLG sheet
and can be written as [12]

R(T ) =
πh̄2
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τ
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in which 1
τ is the resultant scattering rate due to in-plane

and flexural phonons and is given by Matthiessen’s rule
as 1
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Here, kB is the Boltzmann’s constant, g ≈ 3 eV is the
screened deformation potential constant, β ≈ 2-3, ς=1
eV is the bending rigidity, a = 1.4Å is the distance be-
tween nearest carbon atoms, rho = 7.6× 10−7 Kgm−2 is
the mass density, υL = 2.1×104 m/s and υT = 1.4×104

m/s are the longitudinal and transverse sound veloc-
ities respectively [16]. It has been assumed that the
Bloch-Gruneisen temperature (TBG = 57, 38 and 0.1K)
is far less than the room temperature for longitudinal,
transverse and flexural phonons at carrier concentration
n2D=1012 cm−2 respectively and the domination of the
absorption or emission of two phonons for T ≫ TBG. It
can be seen from Fig. 1 that the analytical model of
R(T ) agrees well with the available experimental data
[17] with sheet dimensions as L=1 µm and W=1.5 µm,
carrier degeneracy n2D=1012 cm−2 and varying current
density ranging from 0.2-1.96 mA. The detailed physics
based analytical model to find out R(T ) is reported by
the authors in [12].
The ZA phonon mode dominated diffusive thermal con-
ductivity of an SLG sheet can mathematically be writ-
ten as [18]
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This leads to the expression of κ at lower temperature
(κlow) in an isotopically pure SLG as
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Figure 1: Electrical resistance as a function of temepra-
ture for doped SLG at various current levels. The solid
lines corresponds to the proposed model and symbols
are the experimental data from [17].

The last factor in the parenthesis is generally known as
Debye integral of order 5/2. It can be shown that in the
lower temperature regime where the upper integral limit
tends to infinity, this 5/2 order Debye integral converges
to a numerical constant value 4.58. However, at higher
temperature regime, (5) converges to
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In the absence of isotope density, (7) converges to
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whereas in the presence of heavy isotopic concentration,
(7) approaches
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equations (7)-(9), we have assumed that the function
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at high temperatures approaches unity.
Thus, the total thermal conductivity can finally be mod-
elled for both the aforementioned cases as

κ−1 = κ−1
low + κ−1

high (10)

for a wide range of temperature. Fig. 2 exhibits κ as
a function of T for suspended SLG over a rectangular
trench of various dimensions. The analytical model is
shown by solid and dotted lines and is in well agreement
with the experimental data [2,3] shown by symbols.
The use of these physics based thermal conductivity and
electrical resistance models in (1) and solving it numer-
ically by choosing appropriate boundary conditions i.e.,
T (−L/2) = TL and T (L/2) = TH , where TL and TH

are the temperatures at two end point contacts, the so-
lution to (1) leads to the temperature distribution along
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Figure 2: κ as function of temperature for suspended
SLG over a rectangular trench of various dimensions.
The solid and dotted curves corresponds to the present
analytical model for different widths. The symbols are
the experimental data from [2] and [3].The inset exhibits
the same plot showing the temperature dependency of
κ at low T and high T .

the length of an isotopically pure and impure SLG sheet.
The analytical solution to (1) can be done by referring
to the authors previous work done for metallic SWCNT
[13]. The temperature profile along the SLG sheet for
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Figure 3: T as a function of x for both isotopically
pure and impure cases and for a constant current of
J=1.99×1012 Am−2 and sheet dimensions of L=1 µm
and W=1.5 µm when (a) both the contacts are at 300
K and (b) both one contact is at 300 K and other is at
450 K.

both the isotopically pure and impure cases has been
plotted when both the ends are at same temperature at
300 K, and when one end is at 300 K and the other at
450K as shown in the groups (a) and (b) respectively
in Fig. 3. It can be understood from Fig. 3 that there
is a significant difference in temperature profile when
compare the pure case with an impure one. The tem-
perature rise in case of pure SLG sheet is lower as com-
pared to the identical case when the sheet is isotopically
impure. This is due to the fact that as the form fac-
tor (Γm) increases, the thermal conductivity goes down

as a result of increased mass-difference scattering rate
which in turn increases the temperature along the sheet.
The maximum temperature is at the centre of the sheet
length when both the ends are kept at 300 K and the
temperature difference is about 150 K between isotopi-
cally pure and impure sheets in this case. When one
end is at 300 K and other end is at 450 K, the maximum
temperature point shifts towards the higher T end point
contact and there is a significant rise in T when com-
pare the pure case with an impure one. Fig. 4 exhibits
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Figure 4: T as a function of x for both isotopically
pure and impure cases and for a constant current of
J=1.99×1012 Am−2 and sheet dimensions of L=100 µm
and W=150 µm when (a) both the contacts are at 300
K and (b) both one contact is at 300 K and other is at
450 K.

the temperature profile for the identical cases of Fig.
3 but for sheet dimensions of L=100 µm and W=150
µm. The temperature rise goes slightly lower when the
sheet dimensions are increased. The reason for decrease
in T is that the thermal conductivity increases with the
sheet length and hence makes T to go down. However,
there is no such significant decrease in the temperature
profile when the sheet dimensions are extremely large.
The dependence of the temperature profile on the form
factor is exhibited in Fig. 5, for a sheet dimensions of
L=1000 µm and W=1500 µm. It is demonstrated that
with the decrease in magnitude of the form factor, or in
other words, with the increase in the purity of the sheet,
the temperature rise also decreases. This is highly ex-
pected in this case since, a decrease in Γm indicates
lesser mass-difference scattering. This lowering of the
MD scattering increases sharply the thermal conductiv-
ity of the sheet, which further lowers down the overall
rise in temperature. As Γm decreases, all the curves in
Fig. 5 for all the solutions tend to merge to their corre-
sponding saturation value of the pure SLG sheet under
identical conditions.

3 CONCLUSIONS

Using a flexural phonon dominated temperature de-
pendent thermal conductivity model and temperatrue
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Figure 5: T as a function of x for both isotopically pure
and impure cases for sheet dimensions of L=1000 µm
and W=1500 µm when both the contacts are at 300 K
and for varying current density and form factor (Γm ) .

dependent electrical resistance model, the present study
addresses a numerical solution of Joule-heating equa-
tion in SLGs. The effect of mass difference scattering
has also been introduced for a complete electro-thermal
analysis of isotopically impure graphene sheet for more
realistic case. It has been found that increase in the form
factor, the mass difference scattering severely increases
the temperature rise along the length of the sheet. The
work as presented here can be put forward for obtain-
ing a fairly well estimation of the temperature profile
in carbon based interconnects and hence to predict the
hot-spots, electromigration, thermal cross-talks in mod-
ern ICs with carbon as interconnect material.
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