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ABSTRACT 
 

A model is implemented that captures the dynamic 

nanoindentation response of a viscoelastic material.  

Indenter tip-sample contact forces are modeled using a 

generalized Maxwell model.  Further, this model is used to 

derive empirical formulas to fit experimental dynamic 

nanoindentation data. Using natural latex rubber as a test 

sample, dynamic nanoindentation experiments were 

performed with a 108 μm diamond cono-spherical tip at 

ambient conditions. The results were analyzed using 

conventional Voigt model and contrasted with analysis 

done using the Maxwell-standard linear solid model. The 

results show that conventional Voigt model overestimates 

the storage modulus of the latex sample by ~ 37 percent. 

The analysis will prove useful for quantitative 

nanoindentation property measurements of viscoelastic 

materials such as rubbery polymers and soft biological 

materials.  
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1. INTRODUCTION 

Nanoindentation has become a very useful tool for 

materials properties characterization at nanoscale. The 

technique relies on the local deformation induced on a 

material’s surface with an indenter of known properties 

under the application of a given load. The technique has 

been used to investigate mechanical properties of thin films 

[1-4], hard mineralized tissues and glassy polymers [5], and 

more recently, soft biological tissues [6]. For most elastic-

plastic materials, such as metals and ceramics, the Oliver 

and Pharr [1] method has been used to accurately determine 

elastic modulus and hardness. For viscoelastic materials 

that exhibit a time-dependent stress-strain response, the 

analysis of nanoindentation data by this method usually 

leads to large errors.  

Different approaches such as quasi-static, ramp and hold 

creep [7] and dynamic nanoindentation have been used to 

characterize properties for soft materials. While quasi-static 

nanoindentation can yield accurate information about 

materials’ elastic properties, development is needed to 

characterize viscoelastic materials with dynamic 

nanoindentation [8]. Dynamic nanoindentation involves the 

superposition of a small sinusoidal load onto a DC quasi-

static load and measurement of the steady-state vibrational 

response of the system using a lock-in amplifier [9]. The 

Kelvin-Voigt (two-parameter) solid has been used as the 

conventional model for the tip-sample forces for 

viscoelastic contact. In the two-parameter model, sample 

stiffness is represented with a spring of stiffness k and the 

damping represented by a dash-pot with damping c [10,11]. 

This model captures the essence of viscoelastic behavior 

and is simple to implement; however, the two-parameter 

model oversimplifies the response of most viscoelastic 

materials. It is limited to modeling material response at a 

single frequency, because it only incorporates a single 

relaxation time. Furthermore, it does not account for 

instantaneous elasticity and therefore underestimates 

contact forces [12].  Accurate characterization of material 

properties with a nanoindenter is critically dependent on the 

ability to both correctly model the frequency response of 

the test equipment in contact with the material and the 

correct choice of indenter tip geometry. 

    In this work, the indenter tip-sample contact forces are 

modeled using a generalized Maxwell model. This model is 

used to derive empirical formulas to fit the experimental 

dynamic nanoindentation data to determine the material 

parameters. Using this model, the storage and loss 

indentation moduli are calculated by applying the fit 

parameters within the formulas. Important features of the 

experimental method are discussed and results of natural 

rubber latex are presented. Additionally, the results based 

on Voigt model analysis are compared with the results 

analyzed with Maxwell-standard linear solid (M-SLS).  

 

2. THEORETICAL MODEL 
 

A viscoelastic model commonly used to represent the 

response of real materials is the Wiechert (generalized 

Maxwell model) model [13]. In this model, springs 

represent elastic response while dashpots account for 

dissipation in the material. A free stiffness,    represents 

the long-time behavior exhibited by some viscoelastic 

materials. It provides equilibrium or rubbery stiffness that 

remains after the stresses in the Maxwell arm have relaxed 

as the dashpot extends.  
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During dynamic nanoindentation, a harmonic forcing 

function of the form         
        would result in 

harmonic displacement expressed by      
    here, 

    is the amplitude of the displacement at the same driving 

frequency ω which lags the oscillation of the applied force 

of amplitude    by a phase angle ϕ. The steady-state 

harmonic response then becomes, 
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here,           is the contribution of the resisting force due 

to the generalized Maxwell model consisting of spring and 

damping constants.          is complex with real and 

imaginary parts. The real part represents the storage 

stiffness (        ), while the imaginary part is the loss 

stiffness (      . 
A representation of instrument-sample interaction during 

dynamic testing of a viscoelastic material using generalized 

maxwell model is shown in figure 1. The differential 

equation of motion of the system is given by 
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where,   ,   , and   represent the instrument stiffness, 

damping and mass, respectively and          is the 

contribution to the resisting force caused by the Maxwell 

model.  

 

 
Figure 1. Mechanical model used for nanoindentation 

system with a generalized Maxwell solid to account for 

material response. 

The dynamic compliance function obtained from solving 

the differential equation of motion for the system is 

represented as 
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and the phase shift between the applied force amplitude and 

displacement amplitude is given by 
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Equations (3) and (4) depend on both the indenter 

parameters and material constants. Indenter constants are 

determined from free (tip out of contact) dynamic 

nanoindentation data by setting                  in Eqs. 

(3) and (4) during the calibration process. Material 

constants are then determined by fitting Eqs. (3) and (4) to 

contact frequency spectra data obtained experimentally 

using known values of    ,   , and   determined from 

calibration tests. 

In the limit of linear viscoelasticity, the elastic–

viscoelastic correspondence principle is used to relate the 

dynamic stiffness and damping of the contact to modulus 

values. By making use of Hertzian [14] contact mechanics 

model, the storage indentation modulus is expressed as 
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and the loss indentation modulus is given by 
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where, v is the Poisson’s ratio,    is the contact area 

between the tip and sample,   and     are the storage and 

loss moduli, respectively. 

A useful measure of the relative contributions of the 

storage and loss moduli to the mechanical response of a 

material is given by the loss factor defined as 

 

        
     

        

                                                                          

 

which is a measure of damping in a linear viscoelastic 

material. Tan ( ) > 1 indicates a predominantly viscous or 

fluid-like behavior whereas tan ( ) < 1 indicates a 

predominantly solid-like response. The loss factor is 

anadvantageous parameter in nanoindentation analysis, 

because errors associated with contact area are eliminated. 

Considering tip-sample contact as a M-SLS (three-

parameter model), contact storage stiffness and loss 

stiffness are derived from Eq. (1) respectively as, 
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These expressions are substituted in equations (3) and (4) 

which is then used to fit experimental data allowing the 

determination of the viscoelastic parameters. 

 

3. MATERIALS AND METHODS 

A commercial disposable exam glove made of natural 

rubber latex with thickness of 110 μm (Cranberry USA 

Inc., American Canyon, CA, USA) was cut and glued onto 

magnetic sample holder disc. The tests were performed at 

room temperature using a TI 950 TriboIndenter, (Hysitron 

Inc., Minneapolis, MN). All tests were performed using a 

large cono-spherical tip (radius ~108 µm) in order to 

maintain purely elastic tip-sample interractions [6,8,14].  

A dynamic nanoindentation technique was used to 

determine the viscoelastic properties of latex rubber. The 

tip was loaded at a rate of 50 μN/s and held at a maximum 

peak force of 500 μN resulting in an average maximum 

contact depth of 1400 nm (less than 10 percent of the 

sample thickness). During the hold period, a small 

sinusoidal force was superimposed onto the quasi-static 

load causing the tip to oscillate about its equilibrium 

indentation depth. The dynamic force amplitude used was 5 

μN, which resulted in displacement amplitudes of 

approxiamtely 15-30 nm. During the holding period, the 

frequency of the dynamic load was adjusted incrementally 

between 10-100 Hz and 110-200 Hz.  In both cases,15 

equally-spaced steps were used to ensure relatively short 

test times. For soft materials, longer test times can skew 

results due to non-constant drift rates and can result in an 

artificial increase in the contact depth due to material creep. 

At each frequency, a lock-in amplifier measured the 

displacement amplitude and phase lag of the displacement 

response relative to the input forcing signal. 

 

4. RESULTS AND DISCUSSION 

An example of contact spectra (dynamic compliance 

and phase) are shown in Figure 2. Material response and 

parameters are determined by subtracting the instrument’s 

contributions from the total measured response. The results 

were analyzed using two models: (1) the conventional 

Voigt model and (2) M-SLS. A least-square nonlinear fit to 

Eqs. (3) and (4) was performed on the experimental data 

(compliance and phase) to obtain the model 

constants              for the M-SLS analysis. A similar 

approach has been used in the contact resonance force 

microscopy (CR-FM) technique for viscoelastic properties 

measurements [11]. The M-SLS fits are indicated in Figure 

2 with solid red line. For the Voigt model analysis, the fit 

was performed using equations presented by Asif et al. [9]. 

Fits using the Voigt model are also shown in Figure 2 with 

blue dots. Overall good agreement between both models 

and experimental data is apparent. In both cases, the 

predicted response matches the experimental results.  

 

 
 

Figure 2. Example of frequency response of the indenter tip 

in contact with latex showing, (a) dynamic compliance and 

(b) phase shift. Experimental results are shown using 

diamond symbol with the Maxwell-SLS model fit shown as 

a solid red line and Voigt model as blue dots. 

 

The material stiffness values were calculated from the 

material constants obtained from curve fitting. Equations 

(8) and (9) were solved to determine the storage and loss 

stiffness, respectively, for M-SLS model. For the Voigt 

model, the storage stiffness is represented by the stiffness of 

the sample      while the loss stiffness is given by the 

product of the frequency with the damping constant value 

(    . Indentation moduli were calculated from the 

stiffness values using Eqs. (5) and (6). For a spherical tip of 

tip-radius R, the contact area is given by, Ac = -πhc
2
 + 2πRhc, 

where hc is the contact depth. 

      Illustrating data for the mean of 8 measurements, a 

direct comparison of moduli values as a function of 

frequency for the two models is shown in Fig. 3. The 

hollow circles represent the modulus values obtained using 

Voigt model while the filled dots are values obtained using 

M-SLS model. The storage modulus values obtained using 

Voigt model are higher than those analyzed by M-SLS 

model. Both models give fairly constant storage modulus 

values as a function of the excitation frequency. Loss 

modulus values show an increase for both models as the 

excitation frequency is increased (Figure 3). At low 

frequencies, both models give similar loss modulus values, 

however, as the frequency is increased, loss modulus values 

obtained by Voigt model are slightly higher than those 

obtained by M-SLS. The increase in loss modulus with 

excitation frequency indicates an enhancement of the 

sample damping capacity at higher frequencies. 

At an excitation frequency of 507 rad/s, analysis using 

Voigt model gives an indentation storage modulus value of 

1.77 MPa, while similar analysis using M-SLS gives a 

value of 1.29 MPa for storage modulus. At this frequency, 
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Voigt model overestimates the indentation modulus value 

for this particular sample (latex) by ~37% compared to 

analysis by M-SLS model. Theoretically, as the excitation 

frequency approaches zero (quasi-static), the storage 

modulus should approach the elastic modulus values of the 

sample. Figure 4 shows a plot of the loss factor as a 

function of frequency. Both models show an increase in the 

loss factor value with increasing excitation frequency. The 

increase can be associated with localized softening of the 

sample due to greater amount of energy dissipated in the 

near surface region [5]. 

 

 
 

Figure 3. The storage and loss indentation moduli for latex 

as a function of frequency when modeling the tip-sample 

forces as a M-SLS and as a Voigt solid. 

 

 

Figure 4. Loss factor of latex as a function of frequency 

when modeling the tip-sample forces as a M-SLS and as a 

Voigt solid. 

5. SUMMARY AND CONCLUSION 

A generalized Maxwell model has been implemented 

for dynamic nanoindentation analysis to accurately capture 

the true response of viscoelastic materials. To demonstrate 

the accuracy of the model, a simple case of the generalized 

model (Maxwell-standard linear solid) was used to analyze 

experimental results on latex and the results compared with 

those analyzed using conventional Voigt model. The results 

show that analysis based on a Kelvin-Voigt two parameter 

model, which works well for most glassy polymers, 

overestimates the material stiffness for latex rubber, 

resulting in higher values for the storage modulus. 

Therefore, a more refined model incorporating more 

elements should be used to accurately analyze dynamic 

nanoindentation data for such materials. The measured 

frequency response is a combination of both the indenter 

parameters and tip-sample contact forces; therefore,  proper 

systems calibration is necessary to ensure accurate 

measurements. It has also been shown that model constants 

necessary for determining material stiffness values can be 

obtained by fitting a frequency response function to the data 

obtained experimentally. This work shows that for rubbery 

polymers, analysis of dynamic nanoindentation data using 

two-parameter Kelvin-Voigt model overestimates the. 
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