Transverse Elastic Modulus of Tobacco Mosaic Virus Superlattice

X. Wang* **, and H. Wang*

* Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108. USA, xinnan.wang@ndsu.edu
** Materials and Nanotechnology Graduate Program, North Dakota State University, Fargo, ND 58108. USA, haoran.wang@my.ndsu.edu

ABSTRACT

Mechanical properties of tobacco mosaic virus superlattice nanorodes were measured by nanoindentation with an atomic force microscope (AFM) probe. The elastic modulus of TMV superlattice was measured from the AFM force-displacement curves. The extended JKR model was proposed by processing both the theoretical model and the experimental data to obtain the transverse elastic modulus.

Keywords: TMV, superlattice, mechanical property, elastic modulus, JKR model

INTRODUCTION

Tobacco mosaic virus (TMV) was discovered over a century ago, [1] and recently it has recently been emerged and utilized as a major template for the synthesis of functional materials at micro or nanoscale. [2] TMV consists of 2130 protein subunits that are positioned helically around an RNA, resulting in a 300 nm long thick tubular structure with an outer radius of 9 nm and an inner radius of 2 nm. [3] Its popularity in organic syntheses as the nanotemplate is largely due to its superb structural and functionalized surficial stability in a broad range of thermal and chemical conditions. [4] One of the intriguing features of TMV is its natural linear self-assembly up to several tens of microns, making it an attractive biotemplate for the synthesizing novel organic, inorganic and metallic one-dimensional (1D) nanomaterials. [5] Such kind of 1D materials have already been used in nanoelectronic applications. [6]

Real applications of the synthesized nano biomaterials [7] highly depend upon acquisition of their physical properties of the biotemplates as well as the final materials. Particularly, understanding of the mechanical properties of such materials is key in pushing their applications forward in nanotechnology. Atomic force microscopy (AFM) has been widely accepted as a powerful tool in probing the mechanical properties of bio-nanoparticles and investigate the particle-substrate interactions. [8]

Very recently, a 2-D hexagonally-packed rod-like TMV superlattice of tens of micrometers in length has been synthesized by mixing TMV solution with Ba2+. [9] It is important to study the mechanical properties of such 1D superlattice for its potential utilization as functional materials and devices. In this contribution, the mechanical properties of TMV/Ba2+ superlattice are reported using AFM-based nanoindentation and the finite element analysis of the indentation at two radial directions, to compare the mechanical properties with that of the individual constituent materials.

MATERIALS AND METHODS

The TMV superlattice solution was obtained from the mixture of the BaCl2 and TMV solution (molar ratio of TMV: Ba2+ = 1: 9.2 × 10^4) and diluted with deionized water (volume ratio 1:1). Detailed synthesis procedure can be found in reference [9]. A drop of solution on a Si wafer was centrifuged to generate mono-layer dispersion, and was dried for 30 min under ambient conditions (40% R.H., 21 °C) for AFM (Brukers D3100) observation and mechanical testing. The superlattice sample prior to dilution was also analyzed using a field emission scanning electron microscope (FESEM, Hitachi S4700).

For the measurement of elastic modulus of the superlattice and study of deformation behavior, firstly AFM (AFM probe: Tap150-G, Nanoandmore, tip radius: 12 nm) was used to image scan and locate individual superlattice rods, followed by in situ indentation. For a typical indentation, the relative displacement between the tip and sample surface was less than 4 nm, therefore the tip was simplified to be a sphere. The indentation was performed at 10 different locations with an speed of 185 nm/s. The corresponding normal force v.s. AFM Z piezo displacement (F-DISP) curve was recorded for elastic modulus analysis. The indentation force was converted from the deflection of the AFM probe cantilever, whose spring constant k_c needed to be measured. In the study, Sader method was adopted, where k_c is given by

$$k_c = M_c \rho_c bh l \omega_v^2$$

(1)

where M_c is the normalized effective mass which is 0.242, [10] ρ_c is the density of the Si cantilever, ω_v is the unloaded resonance frequency in vacuum, and h, b, and l are the thickness, width and length, respectively.

RESULTS AND DISCUSSION

39
FESEM observation in Figure 1 shows the TMV superlattice rods. These rod-like particles were of tens of microns’ length and several microns’ width, and were formed by Ba2+.

Figure 2 shows the AFM height image of a representative TMV superlattice. The superlattice is 19.18 µm in length, and width of 1.5 µm, which is in good agreement with the FESEM observation. Since the Z piezo displacement after the tip-sample contact was the inclusion of the sample deformation and the cantilever deflection. To extract the sample deformation, indentations were also performed directly on the Si substrate. [12] Thus, the force v.s. indentation depth (F-\Delta z) relationship was obtained for elastic modulus analysis. Figure 3 is the plot of the retraction F-DISP curves of the sample and Si wafer. The distance \Delta z is the nominal indentation depth on the sample.

To obtain the elastic modulus, the JKR model was modified due to the fact that the probe tip had a radius of 12 nm, which required a smaller indentation depth to fit into this model. Hence, the indentation depth \(\delta \) and the load \(P \) can be given as:

\[
\delta = \frac{a}{2} \ln \left(\frac{R + a}{R - a} \right) - \frac{8\pi a G}{3K} \quad (2)
\]

\[
P = \frac{3aK}{4a} \left(\frac{R^2 + a^2}{4} \ln \left(\frac{R + a}{R - a} \right) - \frac{R}{2} \right) \sqrt{\frac{8\pi a G}{3K}} \quad (3)
\]

where \(a \) is the contact radius; the nominal elastic constant; \(K \) is calculated by

\[
K = \frac{4}{3\pi(k_1 + k_2)} \quad (4)
\]

where \(k_1 = \frac{1-v_1^2}{\pi E_1} \) and \(k_2 = \frac{1-v_2^2}{\pi E_2} \), \(v_1, v_2 \) and \(E_1, E_2 \) are the Poisson’s ratio and elastic moduli of the two spheres, respectively; \(G \) is the adhesion release rate at the contact surfaces, which is determined by

\[
G = \frac{6P_p}{\pi R} \quad (5)
\]

where \(P_p \) is the pull-off force; the nominal radius \(R \) is obtained by the equation

\[
R = \frac{R_i R_s}{R_i + R_s} \quad (6)
\]

where \(R_i \) and \(R_s \) represent the radii of the indenter and sample in contact respectively. The adhesion force from the indentation results is \(\approx 14 \) nN. The equivalent radius \(R \) is approximated to be \(R = 12 \) nm, as the radius of the superlattice is much bigger that the tip radius. The Poisson’s ratio of the superlattice is assumed 0.38, commonly used for biological materials.

The experimental and theoretical Force v.s. Depth (F-DEP) curves based on equations (2) and (3) is plotted in FIG. 4. The elastic modulus was calculated to be 2.14 GPa.

Figure 4: Comparison of indentation retraction F-D curves on Si wafer and superlattice.
AFM based nanoindentation was used to evaluate the transverse elastic modulus of TMV superlattice formed by TMV in Ba²⁺ solution. Based on the experimental F-DEP curves, extended JKR model was utilized to extract the elastic modulus of the superlattice sample. An elastic modulus of 2.14 GPa was obtained.

ACKNOWLEDGEMENTS

Funding support is provided by ND NASA EPSCoR FAR0017788, and NDSU Development Foundation FAR0017503. We are thankful for Dr. Tao Li and Byeongdu Lee for providing the FESEM images at Argonne National Lab.

REFERENCES

