
Rendering techniques for molecular visualization on mobile devices

B. J. Larson

Sunset Lake Software LLC
3030 Laura Lane, Suite 120, Middleton, WI, USA, larson@sunsetlakesoftware.com

ABSTRACT

The processing power and graphics capabilities of
mobile devices have grown at such a rate that tasks
which once required a desktop workstation can now be
performed on a handheld computer. One area enabled
by this is mobile molecular visualization. An open source
application has been written to display 3-D structures of
molecules on Apple, Inc.’s iOS devices. These molecules
can range in size from small compounds to larger the-
oretical structures for molecular nanotechnology. The
rendering techniques used to enhance the display of these
structures will be described, as well as the optimizations
applied to make these techniques performant on hand-
held devices.

Keywords: molecular visualization, 3-D graphics, mo-
bile devices, iPhone, iPad

1 INTRODUCTION

The computational power in handheld devices and
tablet computers has advanced rapidly in recent years,
with these devices becoming capable of tasks once re-
served for desktop workstations. In particular, 3-D graph-
ics hardware in modern mobile devices is making possi-
ble applications like molecular visualization.

The ability to render and manipulate realistic de-
pictions of molecular structures on relatively low cost,
highly mobile computing devices is attractive for use
in education, enhancing research presentations, or as a
convenient reference.

To enable this, a free open source molecular visu-
alization application called Molecules has been written
for Apple, Inc.’s iOS platform to run on their popular
iPhone, iPad, and iPod touch devices. Its source code
is available for download and reuse under the BSD li-
cense.[1]

The application can visualize 3-D structures of molecules
drawn from the RCSB Protein Data Bank [2] or NCBI’s
PubChem. A glucose molecule from PubChem is shown
in a ball-and-stick visualization mode in Figure 1. [3]
Additionally, custom molecular structures in the PDB
format can be directly loaded into the application for
display. Figure 2 shows an example of a theoretical neon
pump designed by K.E. Drexler and R.C. Merkle. [4]

Figure 1: A ball-and-stick representation of glucose from
Molecules, using the 3-D structure definition file com-
puted by NCBI PubChem. [3]

Molecules produces realistic renderings of molecu-
lar structures using techniques first described by Tarini,
et al.[5] This approach creates high-quality renderings
through the use of procedurally generated sphere and
cylinder impostors, combined with ambient occlusion
lighting to simulate real-world illumination.

The processes described in that research were devel-
oped for high-performance desktop computers, with sig-
nificantly different characteristics from modern mobile
phones and tablet computers. Molecules was developed
for the iOS operating system, which uses the industry
standard OpenGL ES interface to present 3-D graphics.
OpenGL ES is the mobile variant of the OpenGL stan-
dard present on the desktop, and it lacks some of the
capabilities of its desktop-bound predecessor.

As a result of this, significant modifications needed
to be made in order for the elements described by Tarini,
et al. to be functional on handheld computers.

2 PROCEDURAL IMPOSTORS

One of the most challenging tasks for 3-D graphics
on computers is to represent smooth, curved surfaces.
3-D objects are typically composed of a series of trian-
gles that are placed in space and processed to create a
2-D representation of 3-D geometry. Curved surfaces
can only be approximated through the use of many flat
polygonal faces. The more faces used, the smoother
the object, but this also places a greater burden on the

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012 681



Figure 2: A spacefilling rendering from Molecules of a
theoretical neon pump designed by K.E. Drexler and
R.C. Merkle. [4]

(-1, -1) (1, -1)

(1, 1)(-1, 1)

Figure 3: The drawing of a sphere impostor.

graphics processing unit (GPU). For structures contain-
ing many smooth objects, like the spheres in a molecu-
lar model, this can reduce the rendering speed on even
powerful GPUs to noninteractive framerates.

Rather than use complex geometry to simulate smooth
spheres or cylinders, procedural impostors can be used
to provide better 2-D representation of these 3-D ob-
jects. Flat polygons are provided that always face the
viewer, within which each pixel is colored as if a smooth
solid object was behind that polygon, with the polygon
merely being a window into that object. A representa-
tion of this process can be seen in Figure 3.

Modern mobile GPUs support the creation of custom
programs, called shaders, that can perform calculations,
manipulate geometry, and dictate the color of each pixel
output to the screen. Using an appropriate shader, each
pixel in an impostor can be filled in as if it were from
a lit sphere or cylinder, producing objects as smooth
as can be represented on the device screen using only a
tiny fraction of the geometry that would otherwise be
required for this.

In the simplest case, spheres are generated by pro-
viding four vertices to the GPU which will define two
triangles. These vertices are each displaced by a vertex
shader in such a way as to present a square facing right
at the user. Within this square, a fragment shader is run
for each pixel to calculate a color at that point corre-

Figure 4: An example of a depth texture rendered for a
structure.

sponding to how a sphere would be lit. Both diffuse and
specular lighting is calculated based on the dot product
of a preset light direction and the normal of the virtual
sphere surface at that point.

Cylinder impostors are more complex, but the same
basic principles apply. Four vertices are transformed
into a rectangle that faces the user. This rectangle is
rotated to match the orientation of the cylinder, and
one of the ends is extended to account for the upwards
curvature at the end facing away from the user. Similar
raytracing calculations are performed for the cylinder as
for the sphere, but the calculation of a lighting normal
at each point now depends on the orientation of the
cylinder, unlike the constant shape of the sphere.

3 PER-PIXEL DEPTH TESTING

While these impostors create smooth spheres and
cylinders in a performant manner, they do introduce
some complexity when two or more of these objects over-
lap. With traditional 3-D geometry, this would be han-
dled automatically by the depth testing hardware in the
GPU. However, these impostors don’t actually exist, so
custom depth tests need to be performed at each pixel.

For desktop GPUs, commands exist to write out cus-
tom depth values for each pixel within a shader, but
these commands are missing on mobile GPUs. There-
fore, a custom rendering pass was created where all ob-
jects are rendered once, with the color values that are
output corresponding to the calculated depth of the im-
postor object at that pixel. The color-encoded depth
values are used with a special blending mode so that
only the depth for the frontmost object rendering to a
pixel is used for that pixel. An example of the result of
this depth image generation is shown in Figure 4.

These depth color values are then read in as part
of the final impostor drawing pass, and they are used

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012682



Figure 5: A spacefilling model of B-DNA [6] rendered
without (left) and with (right) ambient occlusion light-
ing.

to determine whether or not a pixel is drawn to the
screen. This simulates the custom per-pixel depth test-
ing capabilities of desktop GPUs in mobile devices and
makes possible molecular visualizations with intersect-
ing spheres and cylinders.

4 AMBIENT OCCLUSION
LIGHTING

Ambient occlusion lighting is a technique that can
produce a more realistic depiction of an object by simu-
lating the way that ambient light hits complex objects.
Conceptually, a hemisphere is drawn out from each point
on a surface, and the percentage of that hemisphere that
is blocked by the presence of another part of the object
is determined. That point on the surface is then dark-
ened proportionally in response to the amount of the
hemisphere that is blocked, because a physical object
would have less ambient light hitting that point.

As shown in Figure 5, this doesn’t just add realism
to a rendering of a molecular model, it also helps to
convey more information about the surface structure of
that molecule. Folds and crevices can be seen clearly in
one frame, where before they could only be determined
by repeatedly rotating the model.

Performing these kinds of calculations for every ren-
dered frame would be too computationally expensive, so
this is determined once for a given molecular model and
the resulting illumination pattern is stored in a texture
for later reference. Figure 6 shows the internal structure
of one of these textures, where separate rectangles con-
tain ambient illumination intensities that are mapped to
locations on an atom’s surface. Figure 7 demonstrates
the result of only applying the ambient occlusion light-
ing to the model from Figure 5.

Rather than perform ray tracing calculations at each
surface point to generate such a lighting map, a hardware-
accelerated process is used to approximate this lighting.

Figure 6: The internal structure of an ambient occlusion
texture.

The molecular model is rotated into a series of orienta-
tions, points on the surface that are visible from that
orientation are determined, and those points are bright-
ened. This leads to recessed features being darkened,
because they will be hidden behind other portions of
the object more frequently.

Visibility is determined through the use of the pre-
viously described depth texture. For each orientation
tested, a depth texture is rendered, and a separate shader
is employed to render one pass of the ambient occlusion
mapping texture. The 3-D location corresponding to
each point on a portion of the ambient occlusion texture
is calculated and the Z value of that point is compared to
the depth texture value at the X, Y coordinate for that
point. If the Z value matches the depth at that point,
it is rendered with a luminance equal to the inverse of
the number of orientations being tested. If it is lower
than that depth, it is rendered as black. An additive
blend mode is then used to accumulate these ambient
occlusion brightnesses from the various orientations to
produce the final lookup texture.

This ambient occlusion texture is constant for the
entire duration that the user is viewing and manipulat-
ing a given structure, because these molecular models
are static. During the color rendering of the procedural
impostors, the light intensity at a pixel is scaled by the
value read from the ambient occlusion texture for that
point on the surface of the sphere or cylinder.

5 OPTIMIZATIONS FOR MOBILE
GPUS

In addition to the previously described depth tex-
tures, other modifications were made to the technique
described by Tarini, et al. in order for this rendering to
take place at an interactive framerate on mobile devices.

The most significant change was the use of a ren-
dering prepass that takes place just before the depth
texture generation and final screen display steps. In
this prepass, flat objects covering an area known to be
opaque within the sphere impostors are rendered one
sphere radius distance away from the viewer. This is
done while the depth buffer (on the hardware, not the
depth texture) is made writeable.

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012 683



Figure 7: A rendering of just the ambient occlusion
lighting component for a spacefilling model of a B-DNA
structure. [6]

Figure 8: The use of opaque elements rendered below
the impostors.

The depth buffer is then made read-only for the depth
texture and final rendering passes. Most mobile GPUs
are tile-based deferred renderers, and the placement of
these opaque objects helps the GPU to ignore portions
of objects that will never be visible under any circum-
stances. This process is illustrated in Figure 8. On sev-
eral iOS devices, this led to an over sixfold improvement
in rendering speed.

Although all diagrams to this point have illustrated
the sphere impostors as coming from squares, octagons
were used instead within the final version of this appli-
cation. The corners within a sphere impostor never have
any color within them, so using an octagon can reduce
the number of pixels needed to be drawn to the screen.

The vertex and fragment shaders used for all ren-
dering stages were profiled and optimized for the ca-
pabilities of mobile hardware. Floating point precision
was reduced in specific points to speed up processing.
Branching instructions were replaced with step func-
tions, because the former can be costly on mobile GPUs.
Calculations were moved from fragment shaders to ver-
tex shaders where possible.

With these optimizations, the molecular structure
depicted in Figure 5 renders at 43 ms / frame (23 FPS)

on an iPhone 4, 4.9 ms / frame on an iPhone 4S (60+
FPS), and 25 ms / frame (39 FPS) on a 3rd generation
iPad.

6 DISCUSSION

The use of procedural impostors to generate smooth
spheres and cylinders, combined with ambient occlu-
sion lighting, produces renderings of molecular struc-
tures that both have visual appeal and convey additional
depth information. With some modifications, the pro-
cess described by Tarini, et al. can be applied to mobile
devices.

While this particular application was developed for
iOS, the general principles described here could be ex-
tended to other mobile platforms, due to the similarities
in GPU design and programming interfaces. The source
code for the application has been made available for oth-
ers to modify and use under a BSD license.

7 ACKNOWLEDGMENTS

The author would like to thank Rachel Kramer Green,
Wayne Townsend-Merino, and Peter Rose of the RCSB
Protein Data Bank for enabling access to that reposi-
tory. Similarly, the author would like to acknowledge
Rana C. Morris and coworkers at NCBI User Services
for their help in accessing NCBI’s PubChem. Finally,
the author would like to recognize the suggestions and
other help provided by engineers at Apple, Inc., which
were a significant help in the development of this appli-
cation.

REFERENCES

[1] B.J. Larson. Molecules.
http://www.sunsetlakesoftware.com/molecules.

[2] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E.
Bourne. The Protein Data Bank. Nucleic Acids Re-
search 28, 235-242 (2000).

[3] National Center for Biotechnology Informa-
tion. PubChem Compound Database; CID=206.
http://pubchem.ncbi.nlm.nih.gov/summary/
summary.cgi?cid=206.

[4] K.E. Drexler and R.C. Merkle.
Simple Pump Selective for Neon.
http://www.imm.org/research/parts/pump/.

[5] M. Tarini, P. Cignoni, and C. Montani. Ambient
Occlusion and Edge Cueing to Enhance Real Time
Molecular Visualization. IEEE Transactions on Vi-
sualization and Computer Graphics 12, 1237-1244
(2006).

[6] H.R. Drew, R.M. Wing, T. Takano, C. Broka, S.
Tanaka, K. Itakura, R.E. Dickerson Structure of a
B-DNA dodecamer: conformation and dynamics.
Proc.Natl.Acad.Sci.USA 78: 2179-2183 (1981).

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012684




