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ABSTRACT 

 
This paper presents a novel method, Sequential 

Variation Determination (SVD), to efficiently and 
automatically determine the required variance for compact 
model parameters such that the statistical compact model 
produces the required variances for model output 
parameters.  Unlike previous methods for accomplishing 
this task, SVD detects inconsistency in the variances and 
model sensitivities presented. If inconsistency are detected, 
SVD provides both diagnositic information and makes 
reasonable adjustment and arrives at a solution.   

 
Keywords: statistical compact model, semiconductor 
variation modeling, variability modeling, interdie variation. 
 

1 INTRODUCTION 
 
As the MOSFET feature size continues to shrink, 

device-to-device variations in a MOSFET have an 
increasingly important impact on circuit design and 
manufacturing yield. Therefore, it becomes a critical task 
for compact modeling engineers to develop accurate, 
Monte-Carlo (MC) models that capture various device 
variations to allow statistical circuit simulations. To model 
the global (or ‘die-to-die’) variations in a MOSFET, a 
subset of the parameters for the compact model (e.g., 
BSIM4 [1] or PSP [2]) are selected to represent the 
variation.  For each of these, a Gaussian distribution needs 
to be enabled and its variance (or tolerance) adjusted so the 
output of the MC model matches the upper and lower 
bounds for a number of critical device metrics. If we 
manually extract the tolerances of MC model parameters, 
then a MC simulation (e.g., 500-1000 cases) is needed after 
changing each model parameter to check whether the match 
between the MC model and the device variation metrics is 
satisfactory. This ‘manual-extraction’ method is very time-
consuming because each MC simulation may take 2-5 
minutes (on a high performance workstation) and many MC 
runs are needed. Furthermore, the statistical fluctuations in 
MC simulations from run to run can compromise the 
accuracy of the MC model library developed with this 
approach.  

To speed up the MC model extraction process, a 
Backward Propagation of Variance (BPV) method was 
used in [3-5]. However, with potential inconsistencies in 
device variation metrics and/or model parameter 
sensitivities, the BPV approach may not always return a 

valid solution and in practice, manual optimization is often 
needed when creating a MC model library using BPV. 

In this paper, we introduce a novel Sequential Variation 
Determination (SVD) technique that extends the BPV 
method to guarantee a best solution of the MC model for a 
given set of device variation specs. In addition, a diagnosis 
of the variation spec consistency and model parameter 
sensitivities is provided. Based on this SVD technique, we 
developed a fully automated tool for creating MC model 
libraries for advanced CMOS technologies. For a given set 
of device variation specs (e.g., Tox, Vt, Ion, Idlin at various 
geometries), this tool can automatically set the model 
parameter tolerances to best match all the variation specs in 
less than 2 minutes.  

 
2 SEQUENTIAL VARIATION 

DETERMINATION 
 

2.1 The Method 

If the mathematical problem is well formed, i.e. the 
specified variances of the output parameters and 
sensitivities of the selected model parameters are consistent, 
then the BPV method will quickly give a solution and our 
method will find the same solution.  If the problem is not 
well formed, e.g. two output parameters are dominated by 
the same one or two model parameters but have 
inconsistent specified variances, BPV may produce 
negative variances for some model parameters.  This is not 
physically reasonable.  

To avoid this situation, SVD searches for output 
parameters that are dominated by a single model parameter 
and uses that constraint to fixed the corresponding model 
parameter.  The problem is then reformulated using the 
remaining input and output parameters.  Because the set of 
equations is solved sequentially rather than simultaneously, 
the solution obtained is approximate.  Our implementation 
provides a method of iterating to improve the first pass 
solution if necessary.  In practice, we find that one pass is 
adequate in most cases and if not, then a second pass will 
reach a good solution. 

At each step a check for negative variance is conducted.  
Any negative variances are flagged as potential errors and 
set to zero.  Since we cannot implement negative variance 
in the model, setting them to zero and reformulating the 
problem produces a better solution than the mathematically 
exact solution with negative variances.  The user reviews 
the error messages and can take other corrective actions, 
adjust unreasonable variance targets, choose a different set 
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of model parameters to vary, or refit the model to adjust 
unreasonable sensitivities. 

 
2.2 Mathematical details 

Using the Backward Propagation of Variance technique 
[3-5], the following equation group is obtained, 
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Here ∆Mi (i=1,...,NM) is the 3σ variation of each device 
metric (e.g., Ion, Vtsat, etc.) and ∆Pj (j=1,...,NP) is the 3σ 
variation of each MC model parameter (NM≥NP). If we try to 
solve Eq. (1) using matrix inversion (NM=NP) or the linear-
least-square method (NM>NP), any inconsistencies in device 
metric variations (∆Mi) and/or model sensitivities (∂Mi/∂Pj) 
may lead to an invalid solution (e.g., ∆Pj

2<0). Therefore, 
SVD is needed. 

For SVD, we reformulate the mathematical problem.  In 
order to simplify the identification of dominating 
parameters, we scale the equations such that the right hand 
side (RHS) is a vector of 1’s.  To enable iteration, if 
required, we  replace the variances of the model parameters 
with the ratios of the variance to an initial guess of the 
variance as the vector being solved for. We typically use 
previous models as a guide to obtain a reasonable initial 
guess for each parameter.  If the initial guesses are poor, 
iteration using the previous results for the initial guess will 
quickly converge to a good solution. The solution algorithm 
proceeds as follows. 

1) Construct Matrix D with each element calculated as 
di,j=(∂Mi /∂Pj)2·(∆Pj

(0))2 / (∆Mi)2, where ∆Pj
(0) is an initial 

guess of the model parameter variations. Thus Eq. (1) 
becomes,  
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where λj= (∆Pj /∆Pj
(0))2. 

 
2)  For each row in Matrix D, search for a dominating 

element, defined as 
 

∑
=

⋅>
NP

j
jiki dd

1
,, 95.0 .     (3) 

If dm,k is identified as the dominating element of row m, 
λk is calculated using the following equation, 
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Then we move all terms related to λk (i.e., di,k·λk , i=1... 

NP) from the left of Eq. (2) to the right side, and remove 
row m from Matrix D. Pk is saved in List LP and Mm in List 
LM for tracking purpose. 

3) With Matrix D at a reduced size, repeat Step 2. Note 
that the RHS of each row becomes  

 
λi =1- di,k· λk                               (5) 
 

 If at any point, the calculated λ is negative, then set it to 
zero and remove the column associated with it from Matrix 
D. Then send out a warning that a negative variance was 
generated. 

4) If Matrix D finally reduces to a 1x1 matrix, Eq. (2) is 
considered solved with SVD and the model parameter 
variations are updated as ∆Pj = sqrt(λj)·∆Pj

(0). If the size of 
Matrix D is still larger than one when no dominating 
elements can be found in any rows, then solve the 
remaining equation using linear-least-square or matrix 
inversion. However, given the physics-based nature of the 
standard FET models (BSIM4/PSP), this situation can be 
avoided with a carefully selected list of MC model 
parameters. 

5) Test for convergence using: 
 

05.195.0: ≤≤∀ ii λ                                              (6)  
 

If the calulation has not converged, then use the solution 
as the new vector of initial guesses and repeat the process. 

After the automated process completes, the user reviews 
the log for warnings.  A negative λj means that the variances 
of the model parameters set up to that point in the SVD 
process, caused one or more output parameters to have more 
variance than specified. Possible reasons include 
inconsistent specs for output parameter variances, poor 
choice of model parameters, and excessive sensitivities due 
to poor fitting of the nominal model.  

 

3 ILLUSTRATIVE EXAMPLE 
 
The series of matrices below show two sequential steps 

of the algorithm for a MOSFET to illustrate how the 
algorithm proceeds.    

 

 
 
Table 1:  Initial Matrix D for a MOSFET.   

MCOV LOV TOXO VFBO UO RSW1

Idlin 0.000021 0.000083 0.399921 0.250455 0.339129 0.007472

Vtlin 0 0.000002 0.156025 0.812252 0.006202 0

Vtsat 0.005751 0.019367 0.046584 0.36 0.003117 0.000011

Tinv 0 0 1.44 0 0 0

Idsat 0.004218 0.014498 0.148032 0.149657 0.055983 0.069135

Cov 0 0.610233 0.143791 0 0 0
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The model parameters are all PSP parameters except 
MCOV which is a parameter in our statistical model 
representing the correlation between overlap capacitance 
and effective channel length. 

The model parameter TOXO dominates the variance of 
the output parameter Tinv.  The tolerance for TOXO is 
calculated using (4) and the highlighted row and column are 
eliminated.  The RHS is recalculated using (5).  Physically 
this represents reducing the target variance for each output 
parameter by the amount of variance accounted for by the 
just determined Tox tolerance. 

 
 
 
 
 
 
 
Table 2:  Matrix D after the first step. 
 
After eliminating TOXO, the model parameter LOV 

dominates the output parameter Cov.  The tolerance for 
LOV is now calculated and the matrix is reduced again.  
The process proceeds as described above until all λ’s have 
been determined. 

 
4 RESULTS 

 

 

 

 

Fig. 1  Comparison of the MC model results (open circles, 
1000 cases) vs. the device specs (closed squares) at the 
nominal, lower-bound, and upper-bound, respectively. All 
the numbers are normalized by the σ values defined in the 
device variation specs. The dashed rectangle in each plot 
mark the +/-3σ variation of the simulation results.  

Fig. 1 shows the simulated results of a MC model 
library created by our method vs. the device variation specs 
that were extracted from the hardware data of our 28nm 
low-power CMOS technology [6]. Our results show that 
without any manual adjustments, this automatically 
generated MC model library accurately matches all the 
device variation specs for both nFET and pFET at different 
geometries.  

 
5 CONCLUSION 

 
The sequential variation determination method quickly 

and automatically solves for the model paramter tolerances  
required to for a Monte Carlo model to match the specified 
tolerances on a set of measured device characteristics.  The 
solution by construction has no negative variances and 
matches all of the device parameter tolerances.  If the 
exact mathematical solution includes negative variance, 
then the algorithm identifies them to the users so 
corrections can be made if required. 
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