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ABSTRACT 
 

In this paper we propose a method for measuring the 

structural layer thickness of MEMS. Since layer thickness 

strongly influences MEMS behavior, the characterization of 

thickness can be used for quality control and to improve the 

control and prediction of MEMS performance. Typical 

methods for measuring layer thickness involve various 

optical techniques such as ellipsometry and interferometry, 

but such methods are not performance-based and not 

amenable for industrial-scale fabrication. Gupta first 

proposed a torsion structure for measuring layer thickness 

using a gap-closing actuator, computer simulation, and 

some assumptions about the values of material properties. 

Here, we improve Gupta’s method by using comb drive 

levitation, analytical modeling, and eliminating material 

properties from the analysis. And we employ a simulated 

experiment to virtually validate our metrology method.  

 

Keywords: layer thickness, electro micro metrology, EMM, 

torsional resonance, simulated experiment  

 

1 INTRODUCTION 
 

Structural thickness of planar MEMS can influence 

mechanical, thermal, and electrical behaviors. Measurement 

of layer thickness is often desired for calibration, quality 

control, and prediction of MEMS performance.  In many 

cases the layer thickness can have squared, cubed, or higher 

power effects on MEMS performance. 

There are several methods for measuring layer thickness 

[1]. Timing the deposition rate and estimating layer 

thickness provides a very easy but crude measurement 

which ignores process variation. Scanning electron 

microscopy (SEM) can provide good thickness 

measurements, but is time consuming, often requires 

sample preparation, and is usually destructive (for layer 

thickness measurement). Additionally, the alignment of 

viewing angle and the use of measurement bars while using 

SEM can be an ambiguous process which introduces human 

variation [1].  Stylus profilometry can be used to accurately 

measure steps and other geometrical structures, but has 

draw backs with released structures which can be deflected 

or damaged during the measurement [2]. Ellipsometry and 

interferometry are very mature fields and both methods are 

widely used. Ellipsometry is excellent for measuring 

continuous layers with suitable and known optical 

properties. A MEMS for measuring thickness that was 

presented in [7] uses a profilometer and an interferometer.  

MEMS structures with changing geometries made of 

numerous non-standard materials (for optics, e.g. polymers 

or metals) require special treatment and effort.  Some of the 

challenges faced are spot size, which can be larger than an 

entire MEMS structure, depolarization due to the different 

surface materials and structure, and the extensive modeling 

involved with the new materials used in MEMS [3].  

Interferometry is similar to ellipsometry and also provides 

excellent accuracy and precision in certain circumstances, 

but suffers from some of the same challenges.  

Interferometry is more applicable for MEMS because of its 

use in measuring steps and trenches, but is still limited in 

deep trenches and other varying MEMS structures because 

of the varied optical effects of such structures [1], [2], [4].  

Another interesting method for measuring layer thickness is 

micro-Raman spectroscopy where temperature change is 

used to back calculate the structure thickness during laser 

heating.  Targeting of the structure can be very precise, but 

knowledge of material properties is needed and certain 

limitations on materials and structures apply [5].  

Gupta appears to have proposed the first torsional 

resonator for measuring layer thickness [1]. The model is 

subject to squeezed-film damping, ignores warping, and 

assumes material properties. The advancement we make in 

the use of torsional resonance for measuring layer thickness 

is: elimination of squeezed-film damping, inclusion of 

warping, and elimination of unknown material properties.  

The rest of this paper is organized as follows. In Section 

2 we describe the design of our test structure. In Section 3 

we describe our analytical and computer models. In Section 

4 we perform a virtual experiment by using the analytical 

model to predict the layer thickness of the computer model. 

Last, we conclude with our findings. 

 

2 TEST STRUCTURE DESIGN 
 

We illustrate our proposed test structure in Figure 1.  

The device has a fixed-free ‘T’ shape, with a simple 

torsional comb drive at the free end. The structure is easy to 

fabricate and analyze. Because the design consists of a 

single device layer without ground electrodes, it can be 

fabricated with a single mask. Compared to the prior effort 

in [1], our design does not require multiple masks to create 

ground plane electrodes; it is not affected by squeezed-film 

damping, so it does not require vacuum sealing; and it is not 

affected by residual stress.  

For measuring layer thickness, our approach is to 

compare the resonant frequencies of two such torsional 

resonators that differ only in flexure beam width. By 
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assuming that the two fabricated test structures share the 

same unknown material properties and overcut errors in 

geometry, we eliminate the extraneous unknowns and 

express the layer thickness as a function of a ratio of 

torsional resonant frequencies.  

 

 
Fig. 1: Torsional resonator geometry. It operates by exciting a torsional 
resonant mode. Periodic comb drive levitation forces are applied 180 

degrees out of phase to produce torsional excitation at the free end of the 

cantilever. Design parameters are identified. The stators and left end of the 
flexure are fixed. 

 

To increase the chance of process variation consistency 

between both test structures (let’s call the structures a and 

b), they should be fabricated within close proximity to each 

other. The fabricated torsional flexure widths (wa < wb) can 

be measured by our electrical probing technique [8]. The 

comb drive levitation effect, explained in [9], is used here 

to produce out-of-plane electrostatic forces. That is, due to 

the asymmetry about the comb drive fingers, there is a 

larger amount of surface charge on the top surface of the 

fingers than on the bottom surface of the fingers, which we 

exploit to produce torsional resonance. Because the width is 

different for each cantilever, their respective torsional 

resonant frequencies will differ, ω0,a < ω0,b. The parameters 

of our T-shaped design are given in Table 2. 

 

3 MODELING 
 

In this section we present a derivation of our analytical 

model that can be used to determine layer thickness given 

the measured resonance frequencies of two test structures. 

Our model derivation involves using the relationship 

between resonance frequency, stiffness, and moment of 

inertia. By taking the ratio of expressions for structures a  

Table 2: Nomenclature. 

Parameter Description 

c Couette flow damping 

d Comb drive gap distance 

E Young's Modulus 

F Comb drive levitation force 

G Shear Modulus 

h Layer thickness 

Im Moment of inertia of test structure 

Iflexure Moment of inertia of torsion flexure 

Irotor Moment of inertia of rotor finger 

J Polar second-area moment 

Japprox J not including warping 

Jβ J including warping 

kφ Torsional stiffness 

L Length of torsional flexure 

Lrotor Length of comb drive finger 

Loverlap Length of overlap between rotor and stator 

w Width of torsional flexure 

wrotor Width of comb drive finger 

α Maximum function of ratio between h and w 

β Prandtl's stress function 

µ Viscosity of air 

 Poisson's Ratio 

ρ Material density 

ω0 Torsional resonant frequency 

 

and b, we eliminate the unknown material properties, which 

results in an expression where thickness is the only 

unknown.     

 

3.1 Analytical model 

The torsional resonant frequency of the test structure 

depicted in Fig. 1 is related to its torsional stiffness kφ and 

moment of inertia Im by 
 

/ mk I  . (1) 

 

Torsional stiffness is defined as 
 

/k JG L  , (2) 
 

where L is the length of the torsional flexure, and G is the 

shear modulus 
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where E is Young’s modulus and is Poisson’s ratio. If 

warping is not significant, the polar second-area moment J 

can be approximated by  
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for h w . The h and w are switched if w h  for all J.  If 

warping is significant, J can be more accurately expressed 

in terms of the Prandtl's stress function     [10]  
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3( )J hw    , for h w , (5) 
 

where  
 

 max ,h w w h   (6) 
 

is the maximum ratio between w and h of the torsional 

flexure. Prandtl’s stress function is given as [10]  
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 
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 In Fig. 2 we plot the relative error between Japprox and J, 

i.e. (Japprox - Jβ)/Jβ, as a function of α = h/w. This plot is 

useful for determining which aspect ratio requires accurate 

modeling by (5) instead of being approximated by (4). 

The moment of inertia Im of the structure in Fig.1 can be 

decomposed into the moments of the torsional flexure and 

comb drive rotor as 
 

m flexure rotorI I I  , (8) 
 

where the moment of inertia of the comb drive rotor is  
 

    221
2 2

12
rotor rotor rotor rotorI h w L h L  , (9) 

 

and the moment of inertia of the flexure is [11]  
 

1

3
flexureI J L . (10) 

 

Substituting these expressions into (1) we have 
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To eliminate unknown material properties (shear 

modulus and density) we take the ratio of the resonant 

frequencies of the two test structures a and b. For the case 

of accurate warping, we find: 
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for ,a bh w . If warping can be approximated, we have 
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Fig. 2: Relative error between equations (4) and (5).  The relative error 

when h = w is 0.18%. The relative errors at the extrema are -0.36% and 

0.041%. The relative error approaches 0 as the aspect ratio h/w becomes 
large. 

 

for ,a bh w . These expressions can be used to solve for the 

layer thickness h by using, say, a Netwon-Raphson method. 

 

3.2 Finite Element Analysis 

We use a finite element analysis (FEA) tool called  

COMSOL3.5a  to compare and verify our analytical model. 

The torsional test structure was meshed with 90k tetrahedral 

elements (415k degrees of freedom) with fixed boundaries 

shown in blue in Fig. 1.  The material properties were set to 

be isotropic poly silicon with a density ρ of 2300kg/m
3
, a 

Young's modulus E of 165GPa, and Poisson's ratio ν of 0.3. 

Fig. 3 shows the simulated mode 3 of the torsion flexure. 

The electrostatic force due to the levitation effect was 

determined by simulating the surface charge density on the 

rotor as a function of voltage. Fig. 4 shows a cross section 

of the comb finger surrounded by the electric field. The 

rotor is located in the middle, with the two stators on either 

side. The rotor and bottom boundary are at potential V, the 

stators are grounded, and the outermost side and top 

boundaries are set to zero charge / symmetry. By 

integrating the electric Maxwell stress tenor of the top 

surface of the rotor and subtracting it from the bottom 

surface of the rotor, we find a net upwards vertical force on 

the rotor finger of 
 

2 116.74 10F V N    (13) 
 

at the position shown in Fig. 4. With an applied periodic 

voltage of 20V, the levitation force is large enough to drive 

the structure into torsional resonance with an amplitude of 

about 1m. We estimate the vertical amplitude with  
 

 
max

0

 .
2d overlap

F F
y

c hL d  
   (14) 

 

3.3 Verification 

We verify our analytical model by comparing it against our 

computer model. We performed convergence analysis on 

the computer model by refining the number of elements 

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012 209



until results became consistent (at 90k elements). Given 

identical geometric and material properties, our analytical 

and computer models yield torsional resonant frequency of 

308.4kHz and 308.8kHz, respectively. The relative error 

between them is 0.13%. 

  

 
Fig. 3: FEA of torsional resonance and comb drive levitation.  Eigen 
frequency of mode 3 is shown. Geometry is h = 20µm, L = 200µm, w = 

2µm, and Lrotor = 50µm. The torsional resonant frequency is 308.8kHz. A 

cross section of the comb drive is shown with electric field lines and 

voltage. Levitation force on the rotor is 2 116.74 10 .F V N    

 

4 VIRTUAL EXPERIMENT 
 

We conduct a virtual experiment with our computer 

models. By virtual experiment, we mean that we only use 

simulation results that would be available in a real 

experiment. In this case we only use resonance frequency to 

determine layer thickness. It is assumed that width has 

already been measured by, say, our other electronically 

probed method [8]. Since we would not know material 

properties in a true experiment, we are able to prescribe 

arbitrary material properties within the computer model.  

To perform the experiment, we configure two test 

structures with the same geometric overcut from layout and 

the same material properties. Recall, the only difference 

between the two structures is the original layout widths of 

the torsional flexure. E.g., if layout widths are 2.25 µm and 

3.25 µm for a and b, then a 0.25 µm overcut would yield 

fabricated widths of 2 µm and 3 µm respectively. In the 

model we prescribe an ‘unknown’ layer thickness of 4µm. 

The other dimensions of the beams are identical and listed 

as follows: L = 200µm, wrotor = 2µm, Lrotor = 2µm. Using 

these values, the resonant frequencies of structures a and b 

are given as ω0,a = 272.7101kHz and ω0,b = 443.2804kHz. 

By substituting these frequencies in (12), the layer 

thickness can be found iteratively. Using an initial guess for 

thickness of 5µm and iterating h to match the ratio of ω0,a
2
 

to ω0,b
2
 with a tolerance of  310O 

, we find h to be 

3.97µm. This corresponds to an error of 0.03µm, or relative 

error of 0.75%, for layer thickness.   

 

5 CONCLUSION 
 

We have presented a performance-based method for 

measuring layer thickness of fabricated MEMS using 

torsional resonance. The method requires measuring the 

resonance of two test structures. The simple ‘T’ shaped 

structures studied here are not unique. We compared our 

analytical model to computer model for a structure with 

good agreement. Our analytical model matched the FEA 

within 0.13%. To validate our method for measuring layer 

thickness, we conducted a ‘virtual’ experiment where FEA 

was used in place of a real device. Doing so allows us to 

validate our model against exactly known parameters, 

which is not possible to attain using a real device. Our 

‘virtual’ experiment yielded good agreement with a relative 

error of 0.75%.  
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