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ABSTRACT 

In this paper we present our compact electro-

thermo-mechanical beam model. Compact models 

are important for efficiently modeling parametric 

performances of a large number of multicomponent 

systems. There are some finite element analysis tools 

like COMSOL, Intellisense and lumped models in 

Sugar, Coventoreware that can model and simulate 

thermodynamic phenomena‟s. But what is new about 

our compact model is that along with the features 

offered by the above models, ours can support energy 

exchange by radiation or between itself and 

neighboring components. Our compact model 

considers mechanical beams subject to various 

energy transfer mechanisms, properties, and 

boundary conditions. Energy transfer mechanisms 

can include: conduction, convection to ambient, 

radiation due to the radiation source, and interaction 

with the substrate. Thermal expansion is determined 

by computing the average temperature of the beam 

and by applying equivalent end node forces to 

elongate the beam. As a test case we model the 

deflection of a U-shaped thermal actuator subject to 

all the energies listed above. The results compare 

well with experiment.  

  

1. INTRODUCTION 

An Electro-Thermo-Mechanical beam model is 

important for efficiently computing the deflection of 

an assemblage of mechanical beams that are subject 

to one or more applied voltages, currents, thermal 

radiation sources, or energy exchanges between the 

beams and neighboring components, underlying 

substrate, or the ambient. Thermodynamic 

phenomena is commonly modeled and simulated 

using finite element analysis (FEA) tools such as 

COMSOL, Coventorware [1-2] and Intellisense [3]. 

Although FEA is highly informative, it is 

computationally expensive, and can be prohibitive for 

a large system of components or interacting devices. 

Although lumped elements are not as informative as 

FEA, their effective performance often compares 

well to FEA. Existing compact models for electro 

thermal actuators (ETA) have been limited in utility. 

E.g., Sugar‟s [4] previous ETA model required the 

user to know the average temperature, and 

Coventorware‟s lumped ETA does not support 

energy exchange by radiation or between itself and 

neighboring components. 

Beyond Joule heating, we appear to be the first 

to report on a compact hybrid MEMS model that also 

accommodates energy transfer by radiation, 

convection, and other forms of conduction. We found 

no such compact model in the MEMS literature. Our 

model can be used for both sensing and actuation. 

When used as a sensor, applied heating from a 

variety of sources generates a thermal expansion that 

changes the lumped beam‟s geometry and resistance, 

which can be sensed by a change in current, voltage, 

or capacitance. When used as an actuator, an applied 

current or voltage generates a small thermal 

expansion, which can be magnified to achieve a 

useful displacement. 

The rest of the paper is organized as follows. In 

Section 2 we describe our model by providing the 

assumptions, governing equations, boundary 

conditions, and the options available for the user. We 

provide our results in Section 3. We explore some 

applications in Section 4. We validate our model in 

Section 5. Finally we conclude our discussion in 

Section 6. 

2. MODEL DESCRIPTION 

Our modeling assumptions, equations, boundary 

conditions, and parameters are as follows. 

2.1 Assumptions 

The following assumptions were made for 

developing our model. 

i) The axial dimension, length L, is much larger 

than with w and thickness h. This allows us to 

approximate the conduction as being one-

dimensional along the beam‟s length [5-6]. 
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ii) Steady-state condition, such that energy storage 

rate is zero. 

2.2 Governing equations 

To obtain the governing equations of our 

compact model, energy balance relationships are 

applied to its control volume. See Figure 1. This 

gives in out gen stE E E E    where 
inE  denotes 

the rate of energy entering the system and it includes 

k dT dx  from  conductive contacts, 4

sourceT
 
from 

radiation source, convh T  
due to convection, 

outE  is  

the rate of energy leaving the system which includes 

 k dT dx k dT dx dx     to conductive 

contact,  substrate TS T T hR
 

to the substrate, 

4T  to the ambient, and 
convh T

 
which is 

convection to ambient, 
genE

 
is the rate of energy 

generated within the system due to joule heating and 

it‟s given by 
2 2

genE V L , 
stE   is the rate of 

energy stored in the system where st stands for 

„stored energy‟, which is zero from the second 

assumption. Hence the equation reduces to 

 
   

2 2
4 4

2 2

s

source conv

T

S T Td T V
k T T h T T

dx L hR






     

The shape factor S accounts for heat transfer between 

nearby components [5-7], h  is the gap between 

structures,   RT(h) is the thermal resistance [8] from a 

nearby components, ε is emissivity, σ is Stefan 

Boltzmann constant, Tsource is the temperature of a 

radiation source, k is thermal conductivity, V the 

applied voltage, ρ(T) is the resistivity, L is beam 

length, Tsubstrate is the average substrate temperature, 

and T(x) is the element temperature for 0 x L  . 

The average of T(x) is used for thermal expansion, 

which is produced by equivalent node forces. 

 

 

Figure 1: A Lumped control volume showing the 

various sources and sinks. 

2.3 Boundary Conditions 

There are three types of boundary conditions, 

Dirichlet, Neumann, and continuity.  

2.3.1 Dirichlet boundary condition 

The Dirichlet boundary condition prescribes a state 

upon a surface boundary. The state of temperature 

upon this surface boundary is  b bT x T , where xb 

is the location of the boundary surface. 

2.3.2 Neumann boundary condition 

The Neumann boundary condition prescribes a flux at 

a boundary surface. We model a heat flux as 

''

b
b x x

q k dT dx


  where the known heat flux 

which is rate heat transfer per unit area, at the 

boundary is 
''

bq .  

2.3.3 Continuity condition 

The continuity condition prescribes the equality of 

conditions on the immediate sides of the boundary. 

The temperature and flux equate at the boundary. 

   
bL bRx x x x

T x T x
 

 ,
bL bRx x x x

k dT dx k dT dx
 

    

where the subscripts bL and bR stand for the 

immediate left and right of the boundary.  

2.4 Options Available for the User 

The user can choose  

i) Variable resistivity ρ. 

ii) Variable thermal conductivity k. 

iii) Any combination of available boundary 

conditions. 

iv) With or without thermal radiation. 

v) With or without convection. 

 

3. RESULTS 

 

We explore our model by simulating its 

temperature profile along its axial length. Figure 2 

shows the temperature distribution for various 

lengths of a beam 2.5 µm wide, 2 µm thick, 1 µm 

above the substrate, with an applied voltage of 0.3V 

and a dirichlet boundary condition. Figure 3 shows 

the average temperature for this beam. 
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Figure 2: Temperature distribution for beams of 

various lengths. Here the boundary is considered to 

be at substrate temperature.  

 

 
Figure 3: Average temperature for beams of various 

lengths. Here the boundary is considered to be at 

substrate temperature.  

 

Figure 4 shows the average temperature of a beam 20 

µm long, 2.5 µm wide, 2 µm thick and 1 µm above 

the substrate. From the plot we can see that as the 

voltage increases the average temperature increases. 

 
Figure 4: Average temperature of a beam for various 

applied voltages. Here the boundary is considered to 

be at substrate temperature. 

 

For the above cases the resistivity is assumed to vary 

with temperature as     1 5 1 1.23 3 substrateT e e T T     

[6], [8]. Figure 5 shows the average temperature of 

beam for various lengths with Neumann condition at 

the boundary, varying resistivity and conductivity 

[6]. 

 
Figure 5: Average temperature for beams of various 

lengths. Here a Neumann condition with varying 

resistivity and thermal conductivity is applied. 

 

4. APPLICATIONS 

 

In this section we apply our model to get the 

lateral deflection of a U-shaped actuator. Figure 6 

shows the lateral deflection of a U-shaped actuator 

due to Joule heating form an applied voltage.  There 

is energy exchange between the structure and an 

underlying substrate at 20⁰C. The anchored ends are 

assumed to be at the substrate temperature. Figure 7 

shows the deflection with inclusion of convection and 

radiation in addition to the above conditions.

Figure 6: Deflection of a U-shaped actuator due to 

Joule heating form an applied voltage of 2.4V. There 

is energy exchange between the structure and an 
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underlying substrate at 20⁰C, anchors at 20⁰C, The 

simulation was performed by using our online 

MEMS simulator called Sugar. 

  

 
Figure 7: Deflection of a U-shaped actuator due to 

Joule heating form an applied voltage of 2.4V. There 

is energy exchange between the structure and an 

underlying substrate at 20⁰C, anchors at 20⁰C, energy 

exchange between the hot and cold arms of the 

structure, and surrounding ambient at 20⁰C. The 

simulation was performed by using our online 

MEMS simulator called Sugar. 

 

5. VALIDATION 

 

The results were compared with the experimental 

results reported by Huang in [8].From the Figures 8 

and 9 we can see that the results match really well. 

 

 
 

Figure 8. Lateral deflection of U-Shaped Actuator vs 

Applied Voltage. This plot shows that our model 

predicts results which are very close to the 

experimental values. 

 

 
 

Figure 9. Lateral deflection of U-Shaped Actuator vs 

Applied Voltage. In this case the cold arm is 60 µm 

longer than the previous case. This plot shows that 

our model predicts results which are very close to the 

experimental values. 

6. CONCLUSIONS 

In this paper we presented our compact hybrid 

electro-thermo-mechanical beam model which is 

needed for efficiently computing the deflection of an 

assemblage of mechanical beams that are subject to 

one or more applied voltages, currents, thermal 

radiation sources, or energy exchanges between the 

beams and neighboring components, underlying 

substrate, or the ambient. We presented our model 

and validated it. The user may select various energy 

transfer mechanisms, properties and boundary 

conditions. 
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