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ABSTRACT  

In this paper we present a method to measure the 
system mass and material density of MEMS with 
comb drives by measuring resonant frequency and 
the changes in capacitance to close two asymmetric 
gaps. To measure mass we (1) determine the change 
in geometry in going from layout to fabrication to 
characterize displacement, (2) characterize the comb 
drive force to determine stiffness, and (3) divide 
stiffness by resonance frequency to measure system 
mass. To measure material density we divide system 
mass by system volume, which we determine by our 
modified Raleigh-Ritz method. We validate our 
measurement using a method we call simulated 
experiment. A simulated experiment involves 
simulating the kind of measurements that would only 
be available in a true experiment to characterize the 
device. It then becomes a trivial matter to compare 
our results to actual properties of the device, which is 
otherwise difficult to do in a true experiment due to a 
lack of precise measurement standards for MEMS. 
Our results are less than 1% of our computer model.  

Keywords: mass, density, simulated experiment, 
electro micro metrology, EMM 

   

1. INTRODUCTION 

For dynamical microelectromechanical systems 
(MEMS), performance depends highly on system 
mass. By measuring system mass, the response of a 
device might be better understood. And by measuring 
material density, the quality of fabrication might be 
better controlled. For MEMS accelerometers and 
gyroscopes, knowledge of system mass is useful for 
measuring applied forces or accelerations [1].  

There have been several efforts to measure 
system mass by others. For instance, in [2] and [3] 
mass was measured by measuring the frequency shift 
caused by depositing 500nm latex spheres onto a 
MEMS resonator. In [4] they compared the 
difference in cantilever resonance before and after the 
deposition chromium on an atomic force microscope 
(AFM) cantilever. Additional uncertainty arises when 
system stiffness is used in the analysis because 
conventional methods to measure stiffness are 
uncertain by 5% to 40% [5] [6]. In most conventional 
measurement methods, the uncertainty is often 
greater than 10% and the accuracy is often unknown. 

Conversely, it appears that very little research 
has been conducted on local measurements of density 
of commonly used MEMS materials. However, 
global (or averaged) measurements of density can be 
done by performing macroscale measurements of 
geometry and mass of bulk material. However, it is 
expected that the density of many MEMS materials 
varies between facilities, between runs, between 
wafers, and may possibly vary about the wafer itself. 

In this paper we propose a method to measure 
system mass and material density of MEMS with 
comb drives. MEMS without comb drives may 
benefit from such measurements if they are fabricated 
within close proximity to the test structures, such that 
they would be likely to share much of the same 
material properties and overcut errors. Our method 
facilitates electronic probing for industrial-scale 
batch fabrication, or post-packaged on-chip 
measurements for self-calibration. Our method 
includes measuring the change in capacitance to close 
two asymmetric gaps and measuring the resonant 
frequency. Measurements of the gaps are used to 
determine geometry, system volume, displacement, 
comb drive force, and stiffness. The measurement of 
frequency is used to determine system mass. We 
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virtually validate our method by using a simulated 
experiment, in which we emulate experimental 
methods by simulation to extract the mass and 
density of our computer model and compare the 
results against the models true parameters. True 
experimental validation is presently difficult due to a 
lack of accurate and precise ASTM measurement 
standards for microscale mass and material density.  

The rest of the paper is organized as follows. In 
Section 2 we describe our method for measuring 
system mass and density. In Section 3 we describe 
our simulated experiment. Results are provided in 
Section 4. We conclude our findings in Section 5. 
    

2. MASS AND DENSITY  
 

In this section we provide the theoretical basis 
behind the measurement of system mass and density 
using electrical measurands [7], [8]. Our method 
involves applying the following steps to the structure 
shown in Fig. 1a. The structure consists of sensor and 
actuator comb drives with two gaps of unequal size. 

Step 1: By applying a sufficient amount of comb 
drive voltage to close each gap (gapR and gapL), the 
changes the capacitance (CR and CL) are measured. 
We define   as the comb drive constant, which is 
the ratio of change in capacitance to displacement. It 
can be expressed as R RC gap C x     .  

Step 2: The displacement of the comb drive is 
measured by using the result from Step 1. This gives 
us x C    . 

Step 3: We identify the comb drive force as 
2 21 1

2 2F V C x V     .  

Step 4: The system stiffness is k F x  . Using 
our expressions of displacement and force above, the 
nonlinear stiffness can be expressed as 

2 21
2k V C  .             (1) 

The ratio 2V C  becomes nonlinear for large 
deflections. 

Step 5: The system mass of a linear oscillator is 
given by 

2
0system systemm k  , where 0  is the 

undamped resonance (or velocity resonance) 
frequency of the oscillator. Using our stiffness above, 
the system mass can be measured as  

 

2 2 21
02systemm V C    .           (2) 

 

Step 6: The material density is defined as the 
ratio of system mass to system volume systemV  (not to 

be confused with voltage V) as  
 

system systemm V  .            (3) 
 

The system volume for our structure is given by 
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where h is the layer thickness; A  is the planar area of 
the proof mass, comb drive fingers, and truss; w and 
L are the flexure width and length, maxx is the 

maximum amplitude of motion, and   the density. 
Equation (4) is found by applying our modified 
Rayleigh-Ritz method [9] for the portion of the 
“moving” volume that contributes to the system 
mass. The terms in (4) are volume contributions of 
the flexures, proof mass with comb fingers, and truss. 

 

 
Fig. 1: Simulation of the three states of measurement. 
(a) The zero state. C0 is measured. The two unequal gaps 
are labeled as gapL and gapR. Anchors are labeled as X. (b) 
A voltage is applied to close gapR then ∆CR is measured. 
(c) A voltage is applied to close gapL then ∆CL is measured. 
Displacement is color mapped. The placement of gaps 
shown here is not unique and shown here for clarity. Our 
device under test uses folded flexures instead to prevent 
projected beam shortening during deflection.  
 

3. SIMULATED EXPERIMENT 
 

We use a simulated experiment (SE) as our form 
of validation instead of true experimental 
measurements. This is done because present-day 
experimental measurement methods have unknown 
accuracy and an uncertainty larger than numerical 
error. By using SE, we are able to concisely compare 
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the predicted system mass and density of our 
metrology method against that of our computer 
model. We emulate the experimental measurements 
of capacitance and resonance frequency, which are 
commonly electrically-probed measurements in true 
experiments.  

We use a finite element analysis tool to model 
the mechanical and electrical physics. As discussed 
in Section 2, we measure geometry by closing 2 
unequal gaps, measure the comb drive constant, and 
measure resonant frequency as would be done in a 
real experiment. By substituting values in (2) and (3), 
we are able to predict the system mass and material 
density of our model, and validate it against our 
model’s true parameters.   

 
4. RESULTS 

 
Comb drive constant. To maximize precision 

through convergence analysis using a maximal 
number of elements, we model the comb drive 
constant separately from mechanical properties of the 
structure. By assuming that each comb drive finger 
can be modeled identically in their totality, we model 
a single comb finger section as shown in Fig. 2.  
Using 21k quadratic finite elements, the comb drive 
constant converged to 118.917 10 F m   .  

Resonance. We perform eigen frequency 
analysis of mode 1 on the mechanical structure 
shown in Fig. 3. Only half of the symmetric structure 
is shown. The gaps for the structure (mentioned in 
Section 2) are not shown. Using 34k finite elements, 
the planar resonance frequency of mode 1 is found to be 
27,024.64kHz. 

Stiffness. Using 34k elements, we apply a comb 
drive voltage of 50V and simulate the corresponding 
change in capacitance (See Fig. 4). Substituting these 
values into (1), we find the stiffness of our structure 
show in Fig. 3 to be k = 0.38197N/m, compared to the 
stiffness of 0.38156N/m of our computer model.  

Mass and density. Substituting the above results 
into (2) and (3), we predict a system mass of 

111.3248 10systemm kg  , system volume of 
15 35.6734 10systemV m  , and material density of 

32302.63kg m  . The true density based on the 
parameters used in our computer model is 

32300true kg m  . Our predictions of system mass

 
 

 
 

 
 
Fig. 2: Comb drive constant. The images show (top to 
bottom) the configuration of the portion of a comb drive, 
voltage and position at an initial state, and voltage and 
position at an intermediate state. The upper comb finger 
represents the rotor. The lower comb finger represents the 
stator. It required about 21k mesh elements to converge to a 
comb drive constant of 118.917 10 F m   . Finger 

width is 2m, length is 40m, and initial overlap is 20m. 
  

 

 
Fig. 3: Resonance. We minimize the geometry of our 
device under test to maximize mesh converges constrained 
by our computer memory limits. The device is symmetric 
about the vertical axis. Its resonance frequency is 
27,024.64kHz. Flexure length is 150m. flexure width is 
2m, comb finger dimensions are given in Fig. 2, the truss 
area is 600m2, and the proof mass area is 2481m2. 

 
 

 
Fig. 4: Static deflection for stiffness. A static deflection of  
2.944µm is shown for an applied voltage of 50V, which 
generated as force of 71.1146 10F N  . The simulation 
was performed with 34k finite quadratic elements. The 
relative error in the stiffnesses between that of our 
computer model and that of (1) is 0.107%. 
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and material density have relative errors of 0.108% 
and 0.114%, respectively, compared to the 
parameters of our computer model. 

 
5. CONCLUSIONS 

 
We presented a method to measure MEMS 

system mass and material density that facilitates 
common electronically probing methods. Our method 
is currently limited to devices with comb drives, 
which can implement a pair of unequal gaps. To 
examine the feasibility of our method, we used our 
simulated experiment method as a virtual validation 
method because conventional metrology techniques 
have unknown accuracy and high uncertainty. The 
values of system mass and material density computed 
using the method is about 0.1%. 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

[1]  O. Brand, and G. K. Fedder, “Advanced Micro & 
Nanosystems” Wiley-VCH & Co, Vol.2 (2005). 

[2] J. Teva, G. Abadal, “A Femtogram Resolution Mass 
Sensor Platform based on SOI Electrostatically 
driven Resonant Cantilever. Part II: Sensor 
calibration and glycerine evaporation rate 
measurement”, Ultramicroscopy, Volume 106, 808-
814 (2006). 

[3] J. Verd, et al. “Monolithic Mass Sensor Fabricated 
using a Conventional Technology with Attogram 
Resolution in Air Conditions”, Applied Physics 
Letters, 91, (2007). 

[4] P. I. Oden, “Gravimetric Sensing of Metallic 
Deposits using an End-Loaded Microfabricated 
Beam Structure”, Sensors & Actuators, (1998). 

[5]    G. A. Matei, E. J. Thoreson, J. R. Pratt, D. B. 
Newell, N. A. Bumham, “Precision and Accuracy 
of Thermal Calibration of Atomic Force 
Microscopy Cantilevers”, Review of Scientific 
Instruments, (1993).  

[6]  P. J. Cumpson, J. Hedley, “Accurate analytical 
measurements in the atomic force microscope: a 
microfabricated spring constant standard potentially 
traceable to the SI,” Nanotechnology 14, pp. 1279–
1288 (2003). 

[7]   F. Li, J. V. Clark, “Practical Measurements of 
Stiffness, Displacement, and Comb Drive Force of 
MEMS”, EEE UGIM (University Government 
Industry Micro/nano) Symposium, (2010). 

[8]   J. V. Clark, “Post-Packaged Measurement of 
MEMS Displacement, Force, Stiffness, Mass, and 
Damping”, International Microelectronics and 
Packaging Society, March (2012). 

[9]    J. V. Clark, “Electro Micro-Metrology”, PhD 
Dissertation, University of California, Berkeley, 
(2005). 

 
 

NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6275-2 Vol. 2, 2012 199




