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ABSTRACT 
 
Real-time monitoring of liquid’s viscosity has 

significant meaning in many areas. To adjust the viscosity, 
glycerol solutions with various concentrations have been 
widely used. Different types of viscosity sensors have been 
developed using various principles. However, these sensors 
have complicated fabrication and testing procedures and are 
not truly compatible with fluidic systems for on-site 
viscosity detection. Sensors based on single-walled carbon 
nanotubes (SWNTs) have attracted significant attention in 
recent years due to their smaller size, more uniform 
geometry, and more consistent performance. In this paper, 
we report a novel lab-on-a-chip device with integrated 
SWNT nanosensors for glycerol concentration detection, 
which is an indirect indication of fluid’s viscosity. The 
device enables real-time, in-channel measurements of the 
concentration of flowing aqueous glycerol solutions. The 
experimental results show that our device has a relatively 
high sensitivity for glycerol solutions. The sensor resistance 
increases when the glycerol weight ratio rises, indicating an 
increased viscosity. The sensor also responds to the flow 
velocity when the glycerol weight ratio is kept at a constant 
level. Our results demonstrate a simple and effective 
approach to create nanoscale in-channel glycerol sensors. 
The knowledge obtained from this research can enable the 
development of future novel glycerol-based viscosity 
sensors for biomedical applications. 
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1 INTRODUCTION 
 
Viscosity, defined as the resistance of a fluid to flow, is 

one of the most important parameters to characterize fluid 
properties in the field of rheology and tribology [1]. Real-
time monitoring of liquid’s viscosity has significant 
meaning in many areas such as automobile engineering, 
biomedical research, and petrochemistry [2]. For example, 
in the biomedical field, the changes in fluid viscosity 
usually lead to cell function disabilities and can cause 
blood-related diseases [3]. Aqueous glycerol solutions with 
various viscosities have been widely used in experimental 
studies of flow characteristics [4]. Glycerol can be obtained 
either by microbial fermentation or chemical synthesis from 

petrochemical feedstock. It has been widely used in a lot of 
areas such as food, pharmaceutical, pulp and paper, leather 
and textile industries. Because the viscosity change of 
glycerol solution largely influences the quality of the final 
products, real-time monitoring of the glycerol concentration 
in solutions is critical in these applications. 

Recently, different types of viscosity sensors have been 
developed using various principles including the detection 
of resonant frequency change of vibrating micromachined 
cantilevers and the fluorescence intensity change of 
molecular rotor dyes [2]. However, for the micromachined 
viscosity sensors, the complicated fabrication processes and 
large sample scales make them ineffective in real-time, on 
site fluid monitoring. While for the fluorescence sensors, 
the need of specialized instruments and the limited spatial 
resolution limit their accessibility for routine laboratory 
experiments [3]. Similar to the micromachined devices, 
these fluorescence sensors with complicated testing 
procedures are not compatible with microfluidic systems 
for on-site viscosity detection either. 

Single-walled carbon nanotubes (SWNTs) have 
attracted significant attention in many areas due to their 
extraordinary electrical and mechanical properties. SWNT-
based device provide a label-free, real-time, and 
ultrasensitive approach for sensing applications [5]. They 
have been used in a wide range of micro/nanoscale devices 
as shear stress sensors [6] and chemical concentration 
sensors [7]. Since first introduced in the early 1990s, 
microfluidic devices, or lab-on-a-chip devices, have 
become increasingly prevalent in a wide range of areas; 
they have given sensor technology new meanings and new 
opportunities [8]. Microfluidic systems for biomedical or 
chemical studies have achieved significant success in recent 
years due to their advantages including low reagent and 
power consumption, short reaction time, low cost, and high 
compatibility to integrate with other miniaturized devices 
[9]. However, the real-time, in-channel detection of fluid’s 
properties is still challenging. 

In this paper, we report a novel lab-on-a-chip device 
with integrated SWNT nanosensors for indirect detection of 
viscosity, which is extracted from the measurement results 
of glycerol concentration in solutions. SWNTs are aligned 
across two electrodes with dielectrophoresis and then used 
as nanosensors for fluid detection. Glycerol solutions with 
different viscosities are obtained by mixing glycerol and 
deionized (DI) water with different weight ratios. The lab-
on-a-chip device fabricated with photolithography and soft 
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Then DI water is injected into the microchannel with a low 
flow velocity for a few minutes to eliminate the unbonded 
SWNTs. 

 
3 RESULTS AND DISCUSSION 

 
The current-voltage (I-V) characteristics of the SWNT 

sensors are obtained with a semiconductor device analyzer. 
Pure water and three glycerol-water mixture solutions with 
glycerol weight ratios of 10%, 20%, and 30% are injected 
into the microchannel with different velocities which are 
controlled by the syringe pump. These four velocities are 
0.1, 0.2, 0.3, and 0.8 ml/min. Resistances under these 
different conditions are collected and shown in Figure 3. 
Our SWNT sensor shows a high sensitivity for different 
glycerol solutions: under static (0 ml/min) conditions the 
resistance increases when the glycerol concentration 
increases. When a low flow rate of 0.1 ml/min is applied to 
the solution, a small increase in resistance can be observed 
for all the tested solutions. In the medium flow rate range of 
0.2 ml/min and 0.3 ml/min, the resistance change is less 
obvious except for pure water. However, when a high flow 
rate of 0.8 ml/min is applied, the resistances of all the 
solutions present a decreasing trend. 

 

Figure 3: Sensor resistance in four different solutions with 
different flow velocities. 

Previous studies found that a SWNT could adsorb 
chemical reagent molecules on its surface in a liquid. This 
adsorption could cause charge transfer between the SWNT 
and the molecules, leading to an electrical property change 
for the SWNT [7]. In our experiments, the nanosensor’s 
resistance shows an obvious increase when the glycerol 
concentration rises. This trend may be explained by the 
interaction between the glycerol molecules and the SWNTs. 

However, there are some other factors that can influence 
the sensing performance of SWNT sensors. Early studies 
reported that structural deformations of a SWNT could also 
change its electrical properties [14]. Bending or twisting a 
SWNT can decrease its transmission function and leads to 
an increase in resistance. However, there is a limit for this 
increase because once the bending exceeds a certain range, 

more kinks are generated in the structure. These kinks can 
lead to tubular structure collapse or damage [14]. Other 
recent studies demonstrated that when an electric current 
was applied to a SWNT, its temperature was increased due 
to generated heat [6]. Once a flow was introduced onto the 
SWNT, its temperature was decreased because of the heat 
convection between the flow and the SWNT. Consequently, 
a higher flow rate caused a lower temperature on the 
SWNT, creating a lower resistance reading. 

The real-time sensing performance of our sensor in a 
wider velocity range is investigated. In a separate 
experiment, the syringe pump is used to change the flow 
rate in the microchannel and the real-time resistance change 
is recorded and shown in Figure 4. Three glycerol-water 
mixture solutions with glycerol weight ratios of 10%, 20%, 
and 30% are selected and the flow rates are set as 0.1, 0.5, 
and 0.9 ml/min. For each tested glycerol solution, the 
resistance shows a clear drop when the flow rate is 
increased and it reaches a steady state quickly after the flow 
rate change. Comparing the three tested solutions at any 
given flow rate, the resistance increases when the glycerol 
weight ratio is increased. This means that under the same 
flow rate, the nanosensor’s resistance change reflects the 
glycerol concentration in the solution. This can be used to 
indicate the viscosity change of the flowing fluid in a 
microchannel. 

 

Figure 4: Real-time sensor resistance changes in continuous 
flows with different velocities. 

Another experiment is conducted to evaluate the real-
time response of the nanosensor for different glycerol 
solutions. In this experiment continuous fluids with a 
constant flow rate of 0.1 ml/min are injected into the 
microchannel. The real-time detection results are illustrated 
in Figure 5. The sensor’s resistance increases when the 
glycerol concentration rises. The lowest resistance is 
measured as approximately 1100 Ω in water and the highest 
value is 1320 Ω in a 50% glycerol solution. 

Our preliminary results demonstrate that the lab-on-a-
chip device with intergrated SWNT nanosensors has a high 
sensistivity towards the glycerol concentration change. This 
behavior can be used to determine the fluid viscosity 
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indirectly. Further experiments will be developed and 
performed to investigate the possibility of using this device 
to measure the liquid’s viscosity directly. Both 
experimental and theoretical approaches will be used for us 
to achieve a better understanding of the sensing 
mechanisms. In addition, we will examine the applicability 
of the new device in practical applications. 

 

Figure 5: Real-time sensor resistance change in a 
continuous flow using fluids with different viscosities. 

 
4 CONCLUSIONS 

 
In summary, we have investigated a new method for the 

detection of glycerol concentration in solutions using an 
integrated microfluidic-nanosensor system. This method 
can be used for indirect measurements of liquid’s viscosity. 
A SWNT-based glycerol sensor is fabricated with 
photolithography and soft lithography methods. The real-
time resistance reading of the SWNT sensor reveals clear 
and repeatable dependence on the glycerol concentration. In 
general, the sensor resistance increases when the glycerol 
ratio rises, indicating an increased viscosity. Three potential 
sensing mechanisms are described and discussed in the 
paper. Even though the deformations of SWNTs and the 
heat loss caused by the flowing fluid may influence the 
SWNTs’ electrical properties, these effects can be ignored 
when applied in a constant-flow environment. However, 
further studies are needed to investigate the sensing 
mechanisms. The knowledge obtained from this research 
can enable the development of novel lab-on-a-chip sensors 
for applications in medical areas such as blood testing and 
disease diagnostics. 
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