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ABSTRACT 
 
The aim of the work is to develop a statistical SPICE 

model for the design of high-voltage ICs based TCAD 
simulations by considering process variations. From the in-
line data analysis (together with initial TCAD simulations), 
critical process variables, which are responsible for the 
electrical parameter shift, have been chosen for process and 
device TCAD simulations. An interface between 
commercial process simulator [1] and Minimos-NT [2] (a 
device simulator developed by TUW) was also addressed, 
and statistical process and device simulations were 
performed for the high-voltage n- and p-channel LDMOS 
transistors implemented in a HV-CMOS technology. 
Finally, a statistical SPICE model implementation was done 
successfully as a linear combination of related SPICE 
parameters. 

  
Keywords: Monte Carlo, LDMOS, Process Variation, 
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1 INTRODUCTION 
 
Worst Case and Monte Carlo SPICE simulation is very 

essential for robust analog/RF and HV design. Predictable 
process variability (PV) SPICE simulations are usually 
based on adequate amount of process monitoring data 
(PCM). Special products need new technologies or even 
new integrated devices in stable processes during or before 
device development has been started. In this paper we 
benchmark the TCAD capabilities in terms of PV 
predictability for SPICE applications. Beside predictability 
and accuracy time to final SPICE model is of major 
interest. Especially in HV CMOS technology new devices 
are developed very often for new voltage levels where 
already calibrated TCAD tools can be used. 

 
2 DEVICE/TECHNOLOGY 

DESCRIPTION 
 
For this investigation an isolated n-channel HV 

MOSFET device out of austriamicrosystems 0.35um high 
voltage (HV) CMOS technology has been selected. 

From Figure 1 the corresponding cross-section 
including the relevant descriptions of this device is shown. 

The lateral HV MOSFET is designed with 5V oxide and 
poly gate extending the field oxide in order to optimize the 
device breakdown. The drift region determines the on 
resistor (RON) and additionally surrounds the body as 
isolation from the substrate. Typical HV Transistor PCM 
data is measured with standard parameter extraction 
strategy. This extraction method requires two device 
geometries for deriving all necessary data of the underlying 
MOS transistor. These geometries are the minimum length 
and a long channel device. 

Figure 1: Schematic lateral view of the investigated n-
channel high voltage LDMOS transistor 

 
3 PROCESS VARIATION AWARE TCAD 

SIMULATION 
 

The overall work can be split into two main parts, the 
generation of statistical data based on TCAD simulations 
on one hand side and their analysis and manipulation/ 
implementation of these data into statistical SPICE models 
on the other hand side. A flow derived from this is shown in 
Figure2, where the green box is indicating the process and 
device simulation. The yellow boxes take respect to the 
implementation into SPICE and its benchmarking. The 
green light box can be allocated by each part, the process 
and device simulation as well as the SPICE implementation 
and therefore builds the connection between them. 

Virtual statistics generation does only make sense if its 
results are more quickly available than the real 
measurement data. Therefore, the process and device 
simulations were based on a minimum set of required input 
parameters and geometries together with efficient DOE 
(design of experiments) to overcome the huge amount of 
simulation time. For the investigated n-channel LDMOS 
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transistor (HV-NMOS), a set of 8 critical parameters have 
been chosen to regard process variations as input 
parameters (pi) to the system. 

 
Figure 2: Flow for the generation of statistical SPICE 

models. 

The selected parameters can be seen in Table 1. Hereby 
the mean value and variation range of the parameters is 
shown as well. The values are chosen as typical values of 
the parameters applied from independent measurements. 
The variation range describes minimum and maximum 
values of the parameters and can be interpreted as 3σ values 
of the distribution of the process parameters. 

 
Parameter Minimum Mean Maximum 

SX 
DN_DOSE 
DPOverlay 
SPOverlay 
SNOverlay 

PADOX_VthM 
Vt_2p7e12 

TOXTH 

18 
4.05E+012 

-0.1 
-0.1 
-0.1 
0.1 

2.65E+012 
-2 

20 
4.10E+012 

0 
0 
0 

10.05 
2.70E+012 

0 

22 
4.15E+012 

0.1 
0.1 
0.1 
20 

2.75E+012 
2 

Table1: Input parameters for process simulation (n-channel 
LDMOS transistor). 

In the simulations 3 levels of the parameters, the mean 
value, the minimum and the maximum value have been 
investigated. To overcome the time consuming method of 
38=6561 full factorial combinations a Central Composite 
Face-centred (CCF) design was chosen [3]. For n 
parameters this method consists of 2n full factorial 
simulations of the min/max combinations, 2n axial points of 
the screening analysis, and one simulation for the centre 
point. In sum this leads to 273 variations in 8 parameters 
for each, the minimum channel length device and the long 
channel device.  

 
The CCF design is used to model each electrical output 

parameter ˆy as a quadratic model function 
 
      (1) 
 

of the based input parameters x by a least square fit of 
A, b, 

and c for all design points i 
 
      (2) 
 

of their simulated output parameters yi . 
 
Because of the minimum number of input parameter 

permutations only three discrete variations of the input 
values are performed (see Figure 3a). 

These setups result in unrealistic large variation ranges, 
standard deviations or multiple distributions of the output 
parameters. However, the inputs show a natural distribution 
and as a consequence the output shows the result of these 
distributions. Therefore, the methodology of comparison is 
chosen in a different way. 

The simulated output is chosen as a mathematical 
approximation of the input variables. Afterwards the inputs 
variables are chosen normally distributed according to the 
measurements of characteristic values of the input (shown 
in Figure 3b) and are applied to the mathematical 
approximation. This leads to an output, in dependence of 
the natural distribution of input variables. 

After this methodology the output variables show 
realistic distributions compared to measurements. 

Now an analysis of output parameters can be performed. 
These selected output parameters for investigation are: 

 
 The Oxide thickness TOX 
 The threshold-voltage (in the linear region) 

Vthlin of the short device. 
 The threshold-voltage (in the linear region) 

Vthlin of the long device. 
 The saturation current IDSAT 
 The on-resistance Ron. 
 The body factor Gamma of the large device 
 The leakage current Sleak. 

 

Figure 3a: Discrete input parameter values versus frequency 
of occurrence used for TCAD simulations. 

cxbAxxy TT 


min||||  cAxxy i
T

ii
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Figure 3b: Normal distributed input parameters versus 
frequency of occurrence after surface response method [3]. 

 

4 TCAD RESULTS VS. PCM DATA 
The ultimate benchmark test indicating the correctness 

of the environment for virtual data statistic generation is to 
consider the resulting data base in conjunction with already 
existing silicon data. The main parameters listed above 
have been used for benchmarking regarding sigma value 
and correlation. 

In Table 2 the sigma values are shown for these 
parameters. For parameters TOX, short and large VTH, 
RON and GAMMA the results are in high agreement to the 
PCM (process control monitoring) data. Only the standard 
deviation of the IDSAT parameter statistics shows a 
significant higher value. This will directly be reflected by 
more pessimistic models.  

 
 TCAD data PCM data 
 Sigma Sigma 

TOX [nm] 0.09 0.08 
VTH short [mV] 3.73 4.24 
VTH large [mV] 4.2 4.5 
IDSAT [uA/um] 9.0 3.62 

RON [kOhm*um] 0.270 0.232 

Gamma [V1/2] 0.004 0.005 

 
Table2: HV NMOS mean and sigma for TCAD vs. PCM 
data 

 
The second benchmark criteria is summarized in Table 

3 regarding correlation of the relevant parameters. Numbers 
in red take respect to the TCAD data, where blue indicates 
the measured behavior. It is shown that correlations 
between TOX, small and large VTH, IDSAT and RON are 
well reproduced. The Gamma correlation to TOX, VTH 
(short and large) is underestimated what again results in 
pessimistic models. 

Finally it can be stated that the introduced strategy is 
feasible for virtual statistics generation. 
 

 
 

 TOX VTHS RON VTHL IDSAT GAMMA 

TOX 1 
0.55 
0.52 

0.06 
0.10 

0.59 
0.62 

-0.28 
-0.38 

0.43 
0.73 

VTHS  1 
0.40 
0.32 

0.93 
0.92 

-0.36 
-0.28 

0.34 
0.62 

RON  1 0.04 
0.04 

-0.86 
-0.68 

0.26 
0.19 

VTHL  1 
-0.11 
-0.30 

0.38 
0.78 

IDSAT  1 
-0.21 
-0.39 

GAMMA  1 

Table3: Covariance matrix of output parameters. 
 

 
5 GENERATION OF STATISTICAL 
SPICE MODELS WITH MONTE CARLO 

 
Assuming the different parameters to be normally 

distributed, mean and standard deviation reflect a good 
picture on the performance of the one-dimensional 
parameters. In addition to get a complete picture of the full 
multivariate set of data the covariance matrix was extracted.  

The correlation between different parameters can 
indicate unnecessary variables used for SPICE in best case 
and can show wrong implementations in worst case.  

 
Common Monte Carlo SPICE [4] models do not use 

correlations within device parameters. The distributions in 
such models are normally allowed to vary independently to 
cover the whole range of possible values. Due to the lack of 
knowledge regarding the distinct dependency this strategy 
gives more certainty for the user as well as for the model 
provider. On the other hand side having additional 
correlations available their implementation could lead to 
more degree of freedom in critical designs due to higher 
confidence. 

The Monte Carlo implementation is done as a linear 
combination of a certain SPICE parameter with its 
corresponding line neighbours in the covariance matrix. 

These combinations can be written as 
 
      (3) 
 

where si is the SPICE parameter under investigation, si0 
is its mean value, N(0,ơi) and N(0, ơj) are mean-free normal 
distributions, sj are correlated parameters, Cij are the 
correlation coefficients and S is a sensitivity matrix 
indicating the sensitivity of the underlying compact model 
equations. 

The used compact model for this investigation was the 
HiSIM_HV [5] model developed by Hiroshima University. 
The varied SPICE parameters used for generating the 
statistical model and their process representatives are 
summarized in Table2. 

      SNCsNss jijjiii  ,0,00
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Figure 8 Scatterplot NMOS 
VTH (mV) vs. log(SLEAK) 

Figure 9 Scatterplot f. HV 
NMOS VTH (mV) vs. RON 

(kOhm*um) 

 
 

Figure 10 Scatterplot f. HV 
NMOS VTH (mV) vs. 

IDSAT (uA) 

Figure 11 Scatterplot f. HV 
NMOS IDSAT (uA) vs. RON 

(kOhm*um) 

. 
 IDSAT RON SLEAK 
 Target MC Target MC Target MC 
VTH short -0.36 -0.29 0.40 0.33 -0.89 -0.82 
IDSAT  -0.86 -0.87  

Table6: HV NMOS correlation for TCAD vs. SPICE 

6 CONCLUSION 
In this paper we present statistical SPICE models based 

on the PV-aware TCAD simulations. The process variation 
of n- channel LDMOS transistors has been investigated by 
means of simulations. Process and device simulations were 
performed by the SYNOPSYS tools and MINIMOS-NT, 
respectively and benchmarked versus electrical process 
monitoring parametrs from large silicon database. TCAD 
based statistical SPICE models were successfully 
implemented in this work, where errors between target 
(TCAD) and final simulation results (SPICE model) are in 
the few per cent range. 
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